B.L.D.E.ASSOCIATION'S SB ARTS AND K.C.P. SCIENCE COLLEGE, VIJAYAPUR RE-ACCREDITED AT THE 'B⁺⁺, LEVEL

Master of Science (Chemistry) 2023-24

PROGRAM OUTCOMES

POs	DESCRIPTIONS
PO1:	Able to acquire firm knowledge over fundamental theories, concepts of all
	branches of chemistry and able to apply them to societal developments and
	advanced studies.
PO2:	Able to work in the pure, interdisciplinary and multi-disciplinary areas of
	chemical sciences and its applications.
PO3:	Able to develop analytical thinking and apply the same for the
	understanding of underlining the principles, proposing mechanisms,
	problem solving, identification of chemical species/composition and
	arriving to logical conclusion.
PO4:	Able to gain knowledge in classical laboratory techniques and be able to
	use modern instrumentation. So that they can analyze the samples for
	scientific understanding of day to day problems and perform new
	experiments, obtain experimental data its interpretation through scientific
	and chemical principles.
PO5:	Able to integrate knowledge learned in chemistry and chemical sciences to
	various industrial needs including production and quality control.
PO6:	Able to access search and use the chemical literature and also able to work
	on spreading the scientific temper for social, economic, environmental and
	sustainable development of society.
PO7:	Able to apply theoretical and experimental knowledge of chemistry for
	solving the local to global issues for the holistic development of mankind
	and preserve the environment.

Course Outcomes(CO's)

	COURSE				
CLASS	PAPER	OUTCOME	DESCREPTIONS		
021128		S			
MSc I	Inorganic	CO1	Review of different types of chemical		
Sem	Chemistry-I	001	bonds with suitable examples.		
2011		CO2	Apply, apprase& adapt various laws of		
		002	chemical bonds		
		CO3	Classification & Synthesis of Non		
			transition elements.		
		CO4	Outline of metal ligand bonds such as		
			VBT, EAN, CFT & MOT		
		CO5	Ability to understand chemistry of pi		
			acid metal complexes		
		CO6	interpretation of structure & bonding in		
			metal carbonyl, metal nitrosyl&dioxygen		
			complexes. Understanding chemistry of		
			Acid Base.		
	Inorganic	CO1	Analyzing & evaluating ore by		
	Chemistry		volumetric titration.		
	Practicals-I	CO2	Estimation of calcium and magnesium		
			carbonates in dolomite using EDTA		
			titration,		
			and gravimetric analysis of insoluble		
		602	residue		
		CO3	Determination of COD and BOD of		
			polluted water		
MSc I	Organic	CO1	Concept of hybridization: sp3, sp2, sp –		
Sem	Chemistry-I		with examples.		
		CO2	Electronic effects: Inductive, electronic,		
		~~~	resonance and hyperconjugation.		
		CO3	Classification of organic reagents and		
		001	reactions.		
		CO4	substitution reactions:		
		CO5	Stereochemistry		
	Organic	CO1	Preparation p-bromo aniline from		
	Chemistry Dragticals I	002	aniline.		
	Practicals-I	CO2	Preparation of p-nitro aniline from		
			aniline.		

		CO3	Preparation of benzoic acid from benzaldehyde.
MSc I Sem	PhysicalChe mistry-I	CO1	Fundamental laws of quantum chemistry and comparative between classical and quantum theory.
		CO2	Laws and principle of photoelectric, Compton and de Broglie hypothesis.
		CO3	Basic postulates of quantum mechanics.
		CO4	To understand the Schrödinger's equation, Physical significance and characteristics of wave function.
		CO5	Review of basic principles of thermodynamics.
	Physical Chemistry Practicals-I	CO1	Analysis of binary mixture of two miscible liquids by viscometry and the relation between viscosity of solution and electrical conductivity.
		CO2	Potentiometric titration of halides in a mixture of Cl-, Br- and I- with AgNO ₃
		CO3	Titration of phosphoric acid solution with NaOH using quinhydrone electrode by Potentiometrically.
MSc I Sem	Spectroscop y-I	CO1	Review of different types of electromagnetic radiations.
		CO2	Study the types of transitions and their energy levels.
		CO3	Understand the selection rules.
		CO4	Study the classification of polyatomic molecules (CO ₂ , CH ₃ F and BCl ₃ ) based on moment of inertia-linear, symmetric top and asymmetric top.
		CO5	To know the detail study of UV-Visible Spectroscopy.
MSc I Sem	Analytical Chemistry-I	CO1	Review of different classification of analytical methods
		CO2	Study the basics of analytical errors, accuracy, precision and sampling method.
		CO3	Study the Basic fundamentals of chromatography, TLC, HPLC and ion

			exchange chromatography
		CO4	To know the detail study of basics of
			extraction, electrophoresis, TGA, DTA,
		G0.	DSC.
		CO5	To study the principle, instrumentation
MSc	Inorganic	CO1	and applications of analytical techniques UnderstaningMolecular symmetry &
II Sem	Chemistry-II	COI	UnderstaningMolecular symmetry & Group theory
II Sciii	Chemistry-11	CO2	Representation of groups
		CO3	Applications of group theory
		CO4	discussion of reactions and kinetics of
			substitution in octahedral complexes
		CO5	Adopt Knowledge of Nuclear radiation.
	Inorganic	CO1	Qualitative analysis of Inorganic radicals
	Chemistry	CO2	Preparation of complexes
	Practicals-II		
MSc	Organic	CO1	C-C bond forming reactions.
II Sem	<b>Chemistry-II</b>	G04	
		CO2	C-N bond forming reactions.
		CO3	C-O bond forming reactions.
		CO4	C-Cl bond forming reaction: Hell-Volhard-Zelinski reaction.
		CO5	Oxidation and reduction reactions.
	Organic	CO1	Analysis of binary organic mixture
	Chemistry Practicals-II	CO2	Chromatographic techniques.
MSc	Physical	CO1	To understand the basic concept of
II Sem	<b>Chemistry-II</b>		statistical thermodynamics.
		CO2	To know the applicative part of the
			Maxwell Boltzmann stastics, Bose-
		~~~	Einstein statistics, Fermi-direc statistics.
		CO3	Derive the all partition function and there
		CO4	Concept.
		CO4	To know the simple harmonic oscillator in classical mechanics and quantum
			mechanics.
		CO5	To study the applicative part of the
			quantum mechanics.
	Physical	CO1	Kinetics of acid catalyzed of hydrolysis
	Chemistry		of methyl acetyl and determination of

	Practicals-II		energy activation.
		CO2	To determine the concentration of
			H ₂ SO ₄ , CH ₃ COOH and CuSO ₄ in a given
			solution by conductometry.
		CO3	To compare the strength of the weak acid
			by conductance method (CH ₃ COOH and
			HCOOH)
MSc II	Spectroscop	CO1	To understand the magnetic properties of
Sem	y-II		nuclei.
		CO2	To learn about the various factors
			influencing in NMR spectroscopy.
		CO3	To know about the principle,
			instrumentation and applications of FT-
			NMR spectroscopy.
		CO4	To study the brief discussion of
			simplification of complex spectra.
		CO5	To know the detail study of the ¹³ C-
			NMR spectroscopy.
MSc III	Inorganic	CO1	Summarizing concept of electronic
Sem	Chemistry-		spectra of metal complexes
	III	CO2	Interpreting concept of Magnetic
			properties of metal complexes
		CO ₃	Understanding & Organizing
			organometallic chemistry
		CO4	Building reacting of Homogeneous and
			heterogeneous catalysis
		CO5	outline chemistry of Bioinorganic
			chemistry.
	Inorganic	CO1	Preparation of coordination compounds
	Chemistry	CO2	Characterization of Metal ion
	Practicals-		determination in metal complexes
	III	CO3	Anion Estimation in metal complexes
MSc III	Organic	CO1	reagents in organic synthesis
Sem	Chemistry-	CO2	photochemistry
	III	CO3	Norrish type I and Norrish type II
			reactions
		CO4	Pericyclic Reactions: Classification of
			pericyclic reactions.
		CO5	Electrocyclic reactions.
	Organic	CO1	Estimation of aniline and glucose.

	Chemistry Practicals-	CO2	Determination of saponification value of oils.
	III	CO3	Determination of iodine value of oils.
MSc III Sem	Physical Chemistry-	CO1	To understand the basic concept of Surface chemistry.
	III	CO2	To study the Basic principles of catalysis and determine rate of reaction by complex mechansms.
		CO3	To study the Fundamentals and importance of material chemistry.
		CO4	To study the Methods of preparation nanoparticle by using various methods.
		CO5	To derive the 1 st and 2 nd opposing reactions of rate of chemical kinetics.
	Physical Chemistry Practicals- III	CO1	Verify the degree of DeBye-Huckel and Onsagar equivalent conductance for electrolytes (NaCl, HCl) and determine the constant
		CO2	To study the hydrolysis of methyl acetate catalysed by hydrochloric solution by equimolar solution of Urea-HCl solution and hence determine the degree of hydrolysis of salt
		CO3	To determine the molecular weight of high polymer PVA from viscosity measurements.
MSc III Sem	Spectroscop y-III	CO1	To study the basic applications of infra red spectroscopy to inorganic compounds.
		CO2	To know the changes in infrared spectra of donor molecules upon coordination.
		CO3	To learn about the change in spectra accompanying change in symmetry upon coordination.
		CO4	To know the detail study of the FTIR.
		CO5	To learn about basic principle and interaction between spin and magnetic field ESR spectroscopy.
MSc IV	Inorganic	CO1	Extend of chemistry of Non aquous
Sem	Chemistry-		solvents & their reactions

	IV	CO2	understanding Chemistry of f-block
		CO2	metals
		CO3	Definition and classification of fuels,
		CO4	characteristics of fuels
		CO5	Nature and properties of super
	T .	001	conductivity material
	Inorganic	CO1	Experimental setup for Use of Cation
	Chemistry		and Anion resins column set up.
	Practicals- IV	CO2	Determination of SO3 of Cement Gravimetrically
		CO3	Separation and estimation using
			spectrophotometric/volumetric/gravimetr ic method.
MSc IV	Organic	CO1	Designing the synthesis based on
Sem	Chemistry-		retrosynthetic analysis.
	IV	CO2	Disconnection Approach: An
			introduction to synthons and synthetic
			equivalents
		CO3	One Group C-C Disconnections.
		CO4	Two Group C-C Disconnections.
		CO5	Bioorganic polymers.
	Organic	CO1	Isolation of nicotine from tobacco.
	Chemistry	CO2	Isolation of caffeine from tea.
	Practicals- IV	CO3	Isolation of piperine from pepper.
IV Sem	Physical	CO1	To study the applicative part of the
	Chemistry-		superconductors of various processes.
	IV	CO2	To understand the fundamentals of magnetochemistry.
		CO3	Basic concept of Partial molar properties.
		CO4	To study the law, principle, properties,
			derivation, equation and process of
			partial molar properties.
		CO5	To study the detailed study of atomic
			spectra and atomic structure.
	Physical	CO1	Determine the molecular radius of
	Chemistry		glycerol by viscosity method.
	Practicals-	CO2	To determine the molar refraction of
	IV		methylacetate, ethylacetate, n-hexane
			and CCl ₄ and hence to calculate the

		CO3	refraction of C, H and Cl atom. Equivalent conductance of infinite dilution of weak electrolyte (CH ₃ COOH) by Kohlraurch's law.
MSc IV Sem	Spectroscop y-IV	CO1	To know the detail study of the flame emission spectroscopy.
Sem	31	CO2	To understand the basic principle, theory and flame spectra variation of emission intensity with flames, flame background, metallic spectra in flame.
		CO3	To study the applications of flame
		CO4	To know the detail study of the chiroptical spectroscopy.
		CO5	To learn about the plane polarized light, instrumentation and optical rotary dispersion (ORD) of chiroptical spectroscopy.
MSc IV Sem	Project /Dissertation	CO1	Augment the recent developments in the field of green and eco-friendly reactions, pharmaceutical, Bioinorganic Chemistry and relevant fields of research and development.
		CO2	Apply the knowledge to develop the sustainable and eco-friendly technology in Industrial Chemistry.
		CO3	Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry

Co-ordinator
P.G.Department of Chemistry
S.B.Arts & K.C.P. Science College,
Vilayapur-583101

IQAC, Op-ordinator S.B.Arts & K.C. P.Science College, Vijayapur.

Principal, S. B. Arts & K. C. P. Sc. College Vijayapur - 586103.