B.L.D.E.ASSOCIATION'S SB ARTS AND K.C.P. SCIENCE COLLEGE, VIJAYAPUR RE-ACCREDITED AT THE 'B++' LEVEL Bachelor of Science Department of Physics Academic year: 2023-24

Program Outcomes

	Descriptions				
PO1	Discipline Knowledge: Knowledge of basics of science and ability to				
	apply the understanding of fundamentals of major discipline in solving				
	complex problems.				
PO2	Conduct investigations: Conduct investigations of issues in their				
	respective disciplines and arrive at valid conclusions.				
PO3	Problem solving: Implement a solution process using first principles of				
	science to solve problems related to respective discipline.				
PO4	Modern tool usage: Select and use a modern scientific, engineering				
	and IT tool or technique for solving problems in the areas of their				
	discipline.				
PO5	Environment and Society: Evaluate the impact of scientific solutions				
	on society and environment and the need for sustainable solutions.				
PO6	Ethics: Demonstrate professional ethics, responsibilities and norms in				
	respective profession.				
PO7	Individual and teamwork: Work effectively as an individual as a team				
	member and as a leader in a multidisciplinary team.				
PO8	Communication: Communicate effectively with the stake holders,				
	write and comprehend project reports and documentation, deliver				
	effective presentations, and give and receive clear instructions.				
PO9	Project Management and Finance: Apply the knowledge of scientific				
	and technological principles to one's own work to manage projects in				
	multidisciplinary settings.				
PO10	Lifelong Learning: Engage in lifelong learning in the context of				
	changing trends in respective discipline.				

Course outcomes

CLASS	PAPER	COURSE OUTCOMES	DESCREPTIONS		
B. SC. I SEM	Mechanics and properties of matter	CO1	Estimate the possible error in measurement of a physical quantity, using its dimensional equations, the least counts if instruments used and by actual measurements in the appropriate system of units.		
			CO2	Students will be able to explain gradient, divergence and curl in a physical phenomenon and write mathematical formula for the same.	
		CO3	Students must identify and explain three examples for Divergence and three examples for Curls in real-world applications.		
		CO4	Apply laws of conservation of momentum and associated energy along with laws to motion to the systems of linear/rotational motion determines different parameters associated with physically rigid bodies.		
				CO5	Students will describe how fictitious forces arise in a non-inertial frame, using this explain why a person sitting in a merry-go-round experiences an outward pull.
			CO6	Determine theoretically and experimentally the relation between three elastic constants.	
			CO7	Apply the concept of surface tension and viscosity of liquid. Classify fluids based on the law of viscosity.	
					CO8

		6.0.0	Measure surface tension of water and
		CO9	other common liquids.
		CO1	Students will learn, how to use Vernier caliper & screw gauge to calculate dimensional values of different solid
	Theory		materials.
	based Practical's on Mechanics and properties of matter	CO2	Practically learn & get the knowledge about S.H.M.
		CO3	Experimentally students will calculate the value of 'g' at different places in the laboratory & discover that the value of 'g' changes at each place by performing Bar pendulum & Flat spiral spring experiment.
		CO4	Performing the experiment on Stoke's law.
		CO5	Learn to solve system of linear equations.
		CO1	Understand the need of energy conversion and the various methods of energy storage.
	Energy sources	CO2	Explain the field applications of solar energy.
		CO3	Identify wind energy as alternate form of energy and to know how it can be tapped.
		CO4	Explain bio gas generation and its impact on environment.
		CO5	Understand the Geothermal and Tidal energy, its mechanism of production and its applications.
		CO6	Illustrate the concepts of Direct Energy Conversion Systems and their applications.
B. SC. II SEM	Electricity & Magnetism	CO1	Give the applications of charge distribution and energy associated with a charge for various shapes of electrical conductors, using the principles of the different laws of Electrostatic field and potential. Explain the impact of polarization due to
	1	~ ~ -	

			an electrical field on a dielectric material,
			and the different terms related to
			dielectrics and the relation between them.
			To obtain the impact of the electrical field
		CO3	in producing a magnetic field with
			resulting laws and applications.
			Define various terms associated with a
			magnetic material and the relation
		CO4	between them, and demonstrate the types
			of the magnetic material in terms of their
			respective BH curves.
			Obtain Maxwell's equations in
			differential and integral forms of
		CO5	transverse electromagnetic waves based
			on Faraday's and Lenz's laws, along
			with their production
			Obtain different quantities of resonance,
		COG	handwidth for DL DC LCD series and
		COU	parallel circuits using basic laws of
			electrical circuits
			Use Ballistic Galvanometer to obtain
		CO7	charge sensitivity and electromagnetic
		007	damping.
			To understand the importance of
		CO1	Thevenin's theorem and Draw the
		COI	Complex Network into a Thevenin's
			equivalent circuit.
	I heory		To understand the importance of Norton's
	based Practical's on Electricity & Magnetism	CO2	theorem and Draw the Complex Network
			into a Norton's equivalent circuit.
		CO3	To study the charging and discharging of
			the capacitor through the given resistance.
			To calibrate the Ammeters for the study
			of Helmoltz Galvanometer and study the
			deflections of the Galvanometer under the
			magnetic field.
		CO5	To study the noise reduction produced

			into De Sauty's AC Bridge and compare the capacitance of the given capacitors
		CO6	Using Cathode Ray Oscilloscope, students will study the measurement of voltage, frequency and phase shift of different waves.
		CO1	To learn about different telescopes used to see galaxies and their ranges.
		CO2	To observe the dispersion of light through prism.
		CO3	To observe rainbows and understand optics.
	Optical Instruments	CO4	To study the reflection and refraction of light, students can use various lenses and different medium.
		CO5	To study the age of the materials or heavenly bodies, carbon dating is very helpful for the students to know the age any of the heavenly bodies.
	Wave motion and Optics	CO1	Identify different types of waves by looking into their characteristics.
B. SC. III SEM		CO2	Formulate a wave equation and obtain the expression for different parameters associated with waves.
		CO3	Give an analytical treatment of resonance in case of open and closed pipes in general and Helmoltz resonators in particular.
		CO4	Describe the different parameters affect the acoustics in a building, measure it and control it.
		C05	Explain the polarization of light and obtain how the polarization occurs due to quarter wave plate, half wave plate and through the optical activity of a medium.
	Theory based Practical's	CO1	Explain how Newton's rings are obtained and discuss how the wavelength of light is determined using this experiment.
	on Wave	CO2	Discuss the formation of different

	motion and		lissajous figures under different
	Optics		conditions of amplitude and frequency
	1		when they superimposed perpendicularly.
			Obtain experimentally frequency of AC
		CO3	using Sonometer
		CO4	How diffraction due to grating.
			Determination of frequency of tuning fork
		C05	by transverse vibration using Melde's
		005	experiment
			Understand the physical basics of the
		CO1	notural greenhouse offect including the
		COI	matural greenhouse effect, including the
	-		Meaning of the term radiative forcing.
		CO2	Know the impacts that climate change is
			having on the natural environment.
	Climate	602	Learn to determine atmospheric humidity
	Science	003	using wet bulb and dry bulb
	_		thermometers.
		CO4	To understand the process of cloud
			seeding.
		CO5	Know some of the global impacts of sea
			level rise.
		CO1	Apply the laws of thermodynamics and
			analyze the thermal system.
			Apply the laws of kinetic theory and
		CO2	Radiation laws to the ideal and practical
	Thermal		thermodynamic systems through derived
			thermodynamic relations.
		CO3	Use the concepts of semiconductors to
DSC			describe different semiconductor devices
	Flootropics	03	such as diode, transistors, bjt, fet etc. and
	Electionics		explain their functioning.
SEN			Explain the functioning of Op-amps and
		CO4	use them as the building blocks of logic
		_	gates.
		CO5	Give the use of logic gates using different
			theorems of Boolean algebra followed by
			logic circuits.
			Explain the polarization of light and how
			the polarization occurs due to quarter

			wave plates, half wave plates and the optical activity of a medium.
	Theory based Practical's on Thermal physics and Electronics	CO1	To draw the characteristics of Zener diode and study and its use as a voltage regulator.
		CO2	Realization of basic gates using NAND gate and using IC7400.
		CO3	Verification of Boolean algebra using NAND gate and IC7400.
		CO4	Study the frequency response of CE amplifier.
		CO1	Identify the failure of Classical Physics at the microscopic level.
B. SC. V SEM	Paper-I Classical Mechanics and Quantum Mechanics - I	CO2	Find the relationship between the normalization of a wave function and the ability to correctly calculate expectation values or probability densities.
		CO3	Explain the minimum uncertainty of measuring both observables on any quantum state.
		CO4	Describe the time-dependent and time- independent Schrödinger equation for simple potentials like for instance one- dimensional potential well and Harmonic oscillator.
		CO5	Understand the concept of tunneling.
	Theory based Practical's on Classical Mechanics and Quantum Mechanics - I	C01	To determine 'g', the acceleration due to gravity, at a given place.
		CO2	Studying the effect of amplitude of oscillation on the time period of the simple pendulum.
		CO3	To study the spectral characteristics of a photo-voltaic cell.
		CO4	Determination of quantum efficiency of Photodiode.
		CO5	To find the value of e/m for an electron by Thomson's method using bar magnets.
		CO6	Verify the Principle of Conservation of Linear Momentum.

	Paper-II Flements	CO1	Describe atomic properties using basic atomic models.
		CO2	Interpret atomic spectra of elements using vector atom model.
	of Atomic, Molecular	CO3	Interpret molecular spectra of compounds using basics of molecular physics.
	& Laser Physics	CO4	Explain laser systems and their applications in various fields.
	Titysics	CO5	Learn the importance of Statistical mechanics and different distribution functions.
	Practical's	CO1	To determine the ionization potential of mercury.
	on Elements	CO2	To determine Planck's constant using Photocell.
	of Atomic,	CO3	Characteristics of Laser Diode.
	Molecular & Laser Physics	CO4	Study of Raman scattering by CCl4 using laser and spectrometer/CDS.
		CO5	Study Photoconductive cell characteristics.
	Paper-I Elements of Condensed Matter & Nuclear Physics	CO1	To learn the seven crystal systems in condensed matter Physics.
		CO2	To study the magnetic and dielectric behaviors of materials.
		CO3	Describe the processes of alpha, beta and gamma decays based on well-established theories.
B. SC. VI SEM		CO4	Explain the basic aspects of interaction of gamma radiation with matter by photoelectric effect, Compton scattering and pair production.
		CO5	Explain the different nuclear radiation detectors such as ionization chamber, Geiger-Mueller counter etc.
		CO6	Explain the basic concept of scintillation detectors, photo-multiplier tube and semiconductor detectors.
	Theory based	CO1	Determination of Plank's constant by Photo Cell.

	Practical's	CO2	B-H Curve Using CRO.
	on Elements of	CO3	Specific Heat of Solid by Electrical Method.
	Condensed Matter & Nuclear Physics	CO4	Analysis of X-ray diffraction spectra and calculation of lattice parameter.
		CO5	Spectral Response of Photo Diode and its I-V Characteristics.
	Paper-II Electronic Instrumenta tion & Sensors	C01	Identify different types of tests and measuring instruments used in practice and understand their basic working principles.
		CO2	Get hands on training in wiring a circuit, soldering, making a measurement using an electronic circuit used in instrumentation.
		CO3	Have an understanding of the basic electronic components viz., resistors, capacitors, inductors, discrete and integrated circuits, colour codes, values and pin diagram, their practical use.
		CO4	Understanding of the measurement of voltage, current, resistance value, identification of the terminals of a transistor and ICs.
		CO5	Identify and understand the different types of transducers and sensors used in robust and hand-held instruments.
		CO6	Understand and give a mathematical treatment of the working of rectifiers, filter, data converters and different types of transducers.
		CO7	Connect the concepts learnt in the course to their practical use in daily life.
			CO8
1		007	I Servicing of simple faults of domestic

			appliances: Iron box, immersion heater, fan, hotplate, battery charger, emergency lamp and the like.
		CO10	Learn about Fourier series and its applications.
	Theory	CO1	Design and construct a Wien bridge oscillator.
	based Practical's	CO2	Study the frequency response of a first order op-amp low pass filter.
	onElectroni c	CO3	Study the characteristics of <i>pn</i> -junction of a solar cell and determine its efficiency.
	Instrumenta tion & Sensors	CO4	Study the characteristics of a photo-diode.
		C05	Study the amplitude modulation using a transistor.
	Project	C01	Understanding research methodology and it helps in research career.
		CO2	Gain experience in research.

HOD

Head **Department of Physics** S.B.Arts & K.C.P.Science College

IQAC, Co-o: dinator S.B.Arts & K.C.P.Science College, Vijevanur.

thur

Principal Principal, Principal, S.B.Arts & KCP. Sc. Colleg Vijayapur.