B.L.D.E. Association's

S.B.Arts and K.C.P. Science College Vijayapur

PG DEPARTMENT OF CHEMISTRY

Programme Outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs)

B.L.D.E. Association's

S.B. Arts and K.C.P Science College Bijapur

Post Graduate Department of Chemistry POS 2019-2020

Subject: Spectroscopy

PO1: In advance elementary/fundamental knowledge.

PO2: Critical thinking, scientific methods to design, carry out analytical the results of experiments and get awareness of the impact of chemistry on environment, society, etc.

PO3: Higher education, competitive, Reputed Research laboratory.

PO4: Industrial application.

PSO1: To develop strong and compete knowledge in theoretical and practical chemistry.

PSO2: Able to explain Theory, Principle, Postulates, Methods, explaining instrumentation, Derivation, calculations and to calculate the physical and electrochemical parameters

PSO3: To recognize the various laws and theories and solving numerical problems.

PSO4: To develop various technical and analytical skills through laboratory training.

POS5: To create awareness the importance. And impact of chemistry on environment.

M.Sc 1st Sem: Spectroscopy-I

CO1: Review of different types of electromagnetic radiations.

CO2: Study the types of transitions and their energy levels.

CO3: Understand the selection rules.

CO4: Study the classification of polyatomic molecules (CO₂, CH₃F and BCl₃) based on moment of inertia-linear, symmetric top and asymmetric top.

CO5: To know the detail study of UV-Visible Spectroscopy.

CO6: To study the λ max for polyenes, α , β -unsaturated aldehydes and ketones (Woodward-Fisher rules), aromatic systems and their derivatives.

CO7: To know about the number of degrees of freedom of vibration, modes of vibratioa and, Vibrational coupling overtones and Fermi resonance.

CO8: To study the brief discussion of identification of functional groups alkanes, alkenes, aromatics, carboxylic acids, carbonyl compounds(aldehydes and ketones, esters), amides and amines.

CO9: To study the principle, instrumentation and applications of Raman Spectra

COURSE: M.Sc Ist Semester (Theory)

Course Code : CHGT-1.4 Subject: Spectroscopy-I

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	2	2	3	3	1	3	3	2	3
CO2	1	1	3	2	3	3	3	2	3
CO3	-	2	1	3	3	3	3	2	3
CO4	-	3	2	2	3	3	3	2	3
CO5	3	2	1	3	3	3	3	2	3
C06	2	3	2	1	3	3	3	2	3
CO7	2	1	1	3	3	3	3	2	3
C08	-	3	2	1	3	3	3	2	3
CO9	-	3	1	1	3	3	3	2	3

M.Sc 2nd Sem: Spectroscopy-II

CO1: To understand the magnetic properties of nuclei.

CO2: To learn about the various factors influencing in NMR spectroscopy.

CO3: To know about the principle, instrumentation and applications of FT-NMR spectroscopy.

CO4: To study the brief discussion of simplification of complex spectra.

CO5: To know the detail study of the ¹³C-NMR spectroscopy.

CO6: To learn about the two dimensional NMR spectroscopy (COSY, NOESY, DEPT Spectra and MRI).

CO7: To know the detail study of the mass spectroscopy.

CO8: To understand the basic theory, principle and instrumentation of different mass spectroscopy techniques.

CO9: To know about the modes of fragmentation and their rules for different class of organic compounds.

CO10: Combined applications of spectroscopic techniques.

COURSE: M.Sc IInd Semester (Theory)

Course Code : CHGT-2.4 Subject: Spectroscopy-II

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	3	2	3	1	3	3	3	2	3
CO2	1	3	2	2	3	3	3	2	3
CO3	3	2	3	3	3	3	3	2	3
CO4	1	3	-	2	3	3	3	2	3
CO5	2	3	2	1	3	3	3	2	3
C06	1	3	2	2	3	3	3	2	3
CO7	-	2	1	3	3	3	3	2	3
C08	2	3	2	3	3	3	3	2	3
CO9	2	3	2	2	3	3	3	2	3
CO10	1	3	1	3	3	3	3	2	3

M.Sc 3rd Sem: Spectroscopy-III

CO1: To study the basic applications of infra red spectroscopy to inorganic compounds.

CO2: To know the changes in infrared spectra of donor molecules upon coordination.

CO3: To learn about the change in spectra accompanying change in symmetry upon coordination.

CO4: To know the detail study of the FTIR.

CO5: To learn about basic principle and interaction between spin and magnetic field ESR spectroscopy.

CO6: To discuss the various factors affecting for ESR spectroscopy.

CO7: To know the detail study of the nuclear quadrupole resonance spectroscopy.

CO8: To study the theory, principles and experimental methods of mossbauer spectroscopy.

COURSE: M.Sc IIIrd Semester (Theory)

Course Code : CHGT-3.4 Subject: Spectroscopy-III

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	1	3	2	1	3	3	3	2	3
CO2	2	3	3	3	3	3	3	2	3
CO3	1	2	2	2	3	3	3	2	3
CO4	-	2	2	3	3	3	3	2	3
CO5	3	3	3	1	3	3	3	2	3
C06	3	1	2	2	3	3	3	2	3
CO7	2	2	3	3	3	3	3	2	3
C08	-	1	2	2	3	3	3	2	3

M.Sc IVth Sem: Spectroscopy-IV

CO1: To know the detail study of the flame emission spectroscopy.

CO2: To understand the basic principle, theory and flame spectra variation of emission intensity with flames, flame background, metallic spectra in flame.

CO3: To study the applications of flame emission spectroscopy.

CO4: To know the detail study of the chiroptical spectroscopy.

CO5: To learn about the plane polarized light, instrumentation and optical rotary dispersion (ORD) of chiroptical spectroscopy.

CO6: To determine the configuration of cyclic and steroidal ketones.

CO7: To study the theoretical basics for fluorescence and phosphorescence in molecular luminescence spectroscopy.

CO8: General scope of applications of luminescence.

CO9: To know the detail study of the photoelectron spectroscopy.

CO10: To learn about the X-ray photoelectron, Auger electron spectroscopy and applications.

COURSE: M.Sc IVth Semester (Theory)

Course Code : CHGT-4.4 Subject: Spectroscopy-IV

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	1	-	3	3	3	3	3	2	3
CO2	-	1	2	3	3	3	3	2	3
CO3	2	3	1	3	3	3	3	2	3
CO4	1	3	2	3	3	3	3	2	3
CO5	2	2	2	1	3	3	3	2	3
C06	2	1	1	2	3	3	3	2	3
CO7	1	2	3	3	3	3	3	2	3
C08	2	1	2	3	3	3	3	2	3
CO9	2	3	1	3	3	3	3	2	3
CO10	1	3	2	3	3	3	3	2	3

P. G. Department of Chamistry, SB Arts & KCP Science Ladlege BIJAPUR - 586101

IQAe, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur. Principal, S.B.Arts & K.C.P. Science College BIJAPUR.

EVALUATION MAPPING

THEORY:

Marks Distribution:

- 1. Internal Assessment = 10 marks
- 2. University Examination = 40 marks

Sl No	Parameter	Percentage (%)
1	Knowledge	10
2	Understanding	15
3	Numericals	05
4	Descriptive	20

P. G. Denartment of Chamistry, SB Arts & KCP Science Lallege BUAFUR - 586101

IQAC, Co-ordinator
S.B.Arts & K.C.P.Science College,
Vijayapur.

Principal,
S.B.Arts & K.C.P. Science College
BIJAPUR.