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Abstract: The Wiener index of a graph G denoted by W (G) is the sum of distances

between all (unordered) pairs of vertices of G. In practice G corresponds to what is known

as the molecular graph of an organic compound. In this paper, we obtain the Wiener index

of quasi-total graph and its complement for some standard class of graphs, we give bounds

for Wiener index of quasi-total graph and its complement also establish Nordhaus-Gaddum

type of inequality for it.
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§1. Introduction

Let G be a simple, connected, undirected graph with vertex set V (G) = {v1, v2, · · · , vn} and

edge set E(G) = {e1, e2, · · · , em}. The distance between two vertices vi and vj , denoted by

d(vi, vj) is the length of the shortest path between the vertices vi and vj in G. The shortest

vi − vj path is often called geodesic. The diameter diam(G) of a connected graph G is the

length of any longest geodesic. The degree of a vertex vi in G is the number of edges incident

to vi and is denoted by di = deg(vi) [2].

The Wiener index (or Wiener number) [8] of a graph G denoted by W (G) is the sum of

distances between all (unordered) pairs of vertices of G.

W (G) =
∑

i<j

d(vi, vj).

The Wiener index W (G) of the graph G is also defined by

W (G) =
1

2

∑

vi,vjǫV (G)

d(vi, vj),

where the summation is over all possible pairs vi, vj ∈ V (G).

The Wiener polarity index [8] of a graph G denoted by WP (G) is equal to the number of
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unordered vertex pairs of distance 3 of G. In [8], Wiener used a linear formula of W (G) and

WP (G) to calculate the boiling points tB of the paraffins, i.e.,

tB = aW (G) + bWP (G) + c,

where a, b and c are constants for a given isomeric group.

Line graphs, total graphs and middle graphs are widely studied transformation graphs.

Let G = (V (G), E(G)) be a graph. The line graph L(G) [11] of G is the graph whose vertex

set is E(G) in which two vertices are adjacent if and only if they are adjacent in G.

The middle graph M(G) [11] of G is the graph whose vertex set is V (G) ∪ E(G) in which

two vertices x and y are adjacent if and only if at least one of x and y is an edge of G, and they

are adjacent or incident in G. The quasi-total graph P (G) of a graph G is the graph whose

vertex set is V (G) ∪ E(G) and two vertices are adjacent if and only if they correspond to two

nonadjacent vertices of G or to two adjacent edges of G or one is a vertex and other is an edge

incident with it in G. This concept was introduced in [6]. The complement of G, denoted by G,

is the graph with the same vertex set as G, but where two vertices are adjacent if and only if

they are nonadjacent in G. We denote the complement of quasi-total graph P (G) of G by P (G).

Its vertex set is V (G)∪E(G) and two vertices are adjacent if and only if they correspond to two

adjacent vertices of G or to two nonadjacent edges of G or one is a vertex and other is an edge

nonincident with it in G. In [9], it is interesting to see that the transformation graph G−++ is

exactly the quasi-total graph P (G) of G, and G+−− is the complement of P (G). Many papers

are devoted to quasi-total graphs [1, 3, 6, 9, 10].

In the following we denote by Cn, Pn, Sn, Wn and Kn the cycle , the path, the star, the

wheel and the complete graph of order n respectively. A complete bipartite graph Ka,b has

n = a+ b vertices and m = ab edges. Other undefined notation and terminology can be found

in [2].

The following theorem is useful for proving our main results.

Theorem 1.1([7]) Let G be connected graph with n vertices and m edges. If diam(G) ≤ 2,

then W (G) = n(n− 1) −m.

§2. Results

Theorem 2.1 If Sn is a star graph of order n, then

W (P (Sn)) = 3n2 − 5n+ 2.

Proof If Sn is a star graph with n vertices, m edges and
n∑
i=1

d2
i=(n − 1)2 + (n − 1), then

P (Sn) has n1 = n+m = 2n− 1 vertices and

m1 =
n(n− 1)

2
+

1

2

n∑

i=1

d2
i = n2 − n
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edges.

In P (Sn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Sn)) = 2.

By Theorem 1.1, W (P (Sn)) = n1(n1 − 1) −m1. Hence

W (P (Sn)) = (2n− 1)(2n− 2) − n2 + n = 3n2 − 5n+ 2. 2
Theorem 2.2 If Kn is a complete graph of order n, then

W (P (Kn)) =
n(n3 + n− 2)

4
.

Proof If Kn is a complete graph with n vertices, m edges and
n∑
i=1

d2
i = n(n − 1)2, then

P (Kn) has n1 = n+m = n2+n
2 vertices and

m1 =
n(n− 1)

2
+

1

2

n∑

i=1

d2
i =

n(n2 − n)

2

edges.

In P (Kn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Kn)) = 2. From Theorem 1.1,

W (P (Kn)) = n1(n1 − 1) −m1

=
n2 + n

2
[
n2 + n

2
− 1] − n(n2 − n)

2
=
n(n3 + n− 2)

4
. 2

Theorem 2.3 If Wn is a wheel graph of order n, then

W (P (Wn)) = 2(4n2 − 9n+ 5).

Proof If Wn is a wheel graph with n vertices, m edges and
n∑
i=1

d2
i=n

2 +7n−8, then P (Wn)

has n1 = n+m = 3n− 2 vertices and

m1 =
n(n− 1)

2
+

1

2

n∑

i=1

d2
i = n2 + 3n− 4

edges.

In P (Wn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Wn)) = 2.

From Theorem 1.1, W (P (Wn)) = n1(n1 − 1) −m1. Hence,

W (P (Wn)) = (3n− 2)(3n− 2 − 1) − (n2 + 3n− 4) = 2(4n2 − 9n+ 5). 2



On the Wiener Index of Quasi-Total Graph and Its Complement 85

Theorem 2.4 If Ka,b is a complete bipartite graph of order n = a+ b, then

W (P (Ka,b)) =
(a+ b+ ab− 1)(a+ b+ 2ab)

2
.

Proof If Ka,b is a complete bipartite graph with n = a+ b vertices, m = ab edges and

n∑

i=1

d2
i = ab(a+ b),

then P (Ka,b) has n1 = n+m = a+ b+ ab vertices and

m1 =
(n+m)(n+m− 1)

2
+

1

2

n∑

i=1

d2
i =

(a+ b)(a+ b+ ab− 1)

2

edges.

In P (Ka,b) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Ka,b)) = 2.

From Theorem 1.1, W (P (Ka,b)) = n1(n1 − 1) −m1. Therefore,

W (P (Ka,b)) = (a+ b+ ab)(a+ b + ab− 1) − (a+ b)(a+ b+ ab− 1)

2

=
(a+ b+ ab− 1)(a+ b+ 2ab)

2
. 2

Theorem 2.5 If Pn is a path of order n > 4, then

W (P (Pn)) =
5n2 − 3n− 4

2
.

Proof If Pn is a path with n vertices, m edges and
n∑
i=1

d2
i = 4n − 6, then P (Pn) has

n1 = n+m = 2n− 1 vertices and

m1 =

(
n+m

2

)
− n(n− 1)

2
− 1

2

n∑

i=1

d2
i =

(n− 1)(3n− 2) − 2(2n− 3)

2

edges.

In P (Pn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Pn)) = 2.

From Theorem 1.1, W (P (Pn)) = n1(n1 − 1) −m1. So

W (P (Pn)) = (2n− 1)(2n− 2) − (n− 1)(3n− 2) − 2(2n− 3)

2
=

5n2 − 3n− 4

2
. 2
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Theorem 2.6 If Sn is a star of order n > 4, then

W (P (Sn)) = 3n(n− 1).

Proof If Sn is a star with n vertices, m edges and
n∑
i=1

d2
i = (n − 1)2 + n − 1, then P (Sn)

has n1 = n+m = 2n− 1 vertices and m1 =
(
n+m

2

)
− n(n−1)

2 − 1
2

n∑
i=1

d2
i = (n− 1)2 edges.

As diam(P (Sn)) = 3. Therefore W (P (Sn)) = n1(n1 − 1) − m1 + Wp(P (Sn)), where

Wp(P (Sn)) is Wiener polarity index of P (Sn). Hence,

W (P (Sn)) = (2n− 1)(2n− 2) − (n− 1)2 +m

= (2n− 1)(2n− 2) − (n− 1)2 + n− 1 = 3n(n− 1). 2
Theorem 2.7 If Kn is a complete graph of order n > 4, then

W (P (Kn)) =
n(n3 + 6n2 − 5n− 2)

8
.

Proof If Kn is a complete graph with n vertices, m edges and
n∑
i=1

d2
i = n(n − 1)2, then

P (Kn) has n1 = n+m = n2+n
2 vertices and

m1 =

(
n+m

2

)
− n(n− 1)

2
− 1

2

n∑

i=1

d2
i =

n(n3 − 2n2 + 3n− 2)

8

edges.

In P (Kn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Kn)) = 2. From Theorem 1.1,

W (P (Kn)) = n1(n1 − 1) −m1

=
n2 + n

2

[
n2 + n

2
− 1

]
− n(n3 − 2n2 + 3n− 2)

8

=
n(n3 + 6n2 − 5n− 2)

8
. 2

Theorem 2.8 If Cn is a cycle of order n > 4, then

W (P (Cn)) =
n(5n+ 1)

2
.

Proof If Cn is a cycle with n vertices, m edges and
n∑
i=1

d2
i=4n, then P (Cn) has
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n1 = n+m = 2n vertices and

m1 =

(
n+m

2

)
− n(n− 1)

2
− 1

2

n∑

i=1

d2
i =

n(3n− 5)

2

edges.

In P (Cn) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Cn)) = 2.

From Theorem 1.1, W (P (Cn)) = n1(n1 − 1) −m1. So,

W (P (Cn)) = 2n(2n− 1) − n(3n− 5)

2
=
n(5n+ 1)

2
. 2

Theorem 2.9 If Ka,b is a complete bipartite graph of order n = a+ b, then

W (P (Ka,b)) =
(a+ b + ab− 1)[2(a+ b+ ab) − ab]

2
.

Proof If Ka,b is a complete bipartite graph with n = a+ b vertices, m = ab edges and

n∑

i=1

d2
i = ab(a+ b),

then P (Ka,b) has n1 = n+m = a+ b+ ab vertices and

m1 =

(
n+m

2

)
− (n+m)(n+m− 1)

2
− 1

2

n∑

i=1

d2
i =

ab(a+ b+ ab− 1)

2

edges.

In P (Ka,b) distance between adjacent vertices is one and distance between nonadjacent

vertices is two, therefore diam(P (Ka,b)) = 2.

By Theorem 1.1,

W (P (Ka,b)) = n1(n1 − 1) −m1

= (a+ b+ ab)(a+ b+ ab− 1) − ab(a+ b+ ab− 1)

2

=
(a+ b+ ab− 1)[2(a+ b+ ab) − ab]

2
. 2

Theorem 2.10 If G is a connected graph of order n, then W (G) < W (P (G)).

Proof If G is graph with n vertices and m edges then P (G) is a quasi-total graph of G

with n+m vertices and
n(n− 1)

2
+

1

2

n∑

i=1

d2
i

edges.
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Wiener index of graph increases when new vertices are added to the graph G. Therefore

W (G) < W (P (G)). 2
Lemma 2.11 If G is connected graph of order n, then

3n2 − 5n+ 2 ≤W (P (G)) ≤ n(n3 + n− 2)

4
,

and the upper bound attain if G is a complete graph and lower bound attain if G is a star graph.

Proof Let P (G) is a quasi-total graph of G with n+m vertices and

n(n− 1)

2
+

1

2

n∑

i=1

d2
i

edges.

G has maximum edges if and only if G ∼= Kn, P (G) has maximum number of vertices if

and only if G ∼= Kn.

Wiener index of a graph increases when new vertices are added to the graph and P (Kn)

has maximum number of vertices compared with any other P (G). Therefore W (P (G)) ≤
W (P (Kn)).

From Theorem 2.2, W (P (Kn)) = n(n3+n−2)
4 . Therefore

W (P (G)) ≤ n(n3 + n− 2)

4
(1)

with equality holds if and only if G ∼= Kn.

For any graph G has minimum edges if and only if G ∼= T and P (G) has minimum

number of vertices if and only if G ∼= T . Wiener index of a graph increases when new vertices

are added to the graph and P (T ) has minimum number of vertices compared with any other

P (G). Therefore W (P (T )) ≤W (P (G)). In the case of tree W (P (Sn)) ≤W (P (T )). Therefore

W (P (Sn)) ≤W (P (G)).

From Theorem 2.1, W (P (Sn)) = 3n2 − 5n+ 2. Hence,

3n2 − 5n+ 2 ≤W (P (G)) (2)

with equality if and only if G ∼= Sn.

From equations (1) and (2), we get that

3n2 − 5n+ 2 ≤W (P (G)) ≤ n(n3 + n− 2)

4
. 2

Lemma 2.12 For any connected graph G of order n ≥ 4,

5n2 − 3n− 4

2
≤W (P (G)) ≤ n(n3 + 6n2 − 5n− 2)

8
,

and the upper bound attain if G is a complete graph and lower bound attain if G is a path.
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Proof Let G be connected graph with n ≥ 4 vertices and m edges. Then P (G) has n+m

vertices and
n(n− 1)

2
+

1

2

n∑

i=1

d2
i

edges. P (Kn) has n+m vertices and

(
n+m

2

)
− (

n(n− 1)

2
+

1

2

n∑

i=1

d2
i )

edges.

G has maximum edges if and only if G ∼= Kn, P (G) has maximum number of vertices if

and only if G ∼= Kn. Wiener index of a graph increases when new vertices are added to the

graph and P (Kn) has maximum number of vertices compared to any other P (G). Therefore

W (P (G)) ≤W (P (Kn)). From Theorem 2.7,

W (P (Kn)) =
n(n3 + 6n2 − 5n− 2)

8
.

Therefore

W (P (G)) ≤ n(n3 + 6n2 − 5n− 2)

8
. (3)

For any connected graph G with n ≥ 4 vertices, G has minimum number of vertices

if and only if G ∼= T . Wiener index of a graph increases when new vertices are added to

a graph and P (T ) has minimum number of vertices compared to any other P (G). Thus,

W (P (T )) ≤W (P (G)).

In case of tree W (P (Pn)) ≤ W (P (T )). Therefore W (P (Pn)) ≤ W (P (G)). By Theorem

2.5, W (P (Pn)) = 5n2−3n−4
2 . Therefore

5n2 − 3n− 4

2
≤W (P (G)). (4)

From equations (3) and (4), we get that

5n2 − 3n− 4

2
≤W (P (G)) ≤ n(n3 + 6n2 − 5n− 2)

8
. 2

The following theorem gives the Nordhaus-Gaddum type inequality for Wiener index of

quasi-total graph.

Theorem 2.13 For any graph G with n ≥ 4,

n(11n− 13)

2
≤W (P (G)) +W (P (G)) ≤ 3n(n3 + 2n2 − n− 2)

8
.
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Proof From Lemmas 2.11 and 2.12, we have

3n2 − 5n+ 2 +
5n2 − 3n− 4

2
≤ W (P (G)) +W (P (G))

≤ n4 + n2 − 2n

4
+
n4 + 6n3 − 5n2 − 2n

8
.

Thus,
n(11n− 13)

2
≤W (P (G)) +W (P (G)) ≤ 3n(n3 + 2n2 − n− 2)

8
. 2
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