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Abstract. The first, second and modified first multiplicative Zagreb indices
of a graph G are defined, respectively, as∏

1(G) =
∏

u∈V (G)

dG(u)2,
∏

2(G) =
∏

uv∈E(G)

dG(u)dG(v)

and ∏∗
1(G) =

∏
uv∈E(G)

[dG(u) + dG(v)]

where dG(w) is the degree of vertex w in G. In the present study, we obtain

the expressions for
∏

1,
∏

2 and
∏∗

1 of generalized transformation graphs Gab.

1. Introduction

In this paper we are concerned with finite, simple, nontrivial and undirected
graphs. Let G be such a graph with vertex set V (G), |V (G)| = n, and edge set
E(G), |E(G)| = m. As usual, n is order and m is size of G. The degree of a vertex
w ∈ V (G) is the number of vertices adjacent to w and is denoted by dG(w). We
use [7] for terminology and notations not defined here.

A graphical invariant is a number related to a graph, in other words, it is a fixed
number under graph automorphisms. In chemical graph theory, these invariants are
also called the topological indices. In 1984, Narumi and Katayama [9] considered
the product index as

NK(G) =
∏

u∈V (G)

dG(u)

for representing the carbon skeleton of a saturated hydrocarbon, and named it as
simple topological index. Tomović and Gutman, this molecular structure descriptor
was renamed as Narumi-Katayama index [15]. In 2010, Todeshine et al. [13, 14]
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have proposed the multiplicative variants of ordinary Zagreb indices, which are
defined as follows:∏

1(G) =
∏

u∈V (G)

dG(u)
2 = [NK(G)]2 and

∏
2(G) =

∏
uv∈E(G)

dG(u)dG(v).

These two graph invariants are called first and second multiplicative Zagreb indices
by Gutman [5]. And recently, Eliasi et al. [4] introduced further multiplicative
version of the first Zagreb index as∏∗

1(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]

and in [6], Gutman called it as modified first multiplicative Zagreb index. The main
properties of multiplicative Zagreb indices are summarized in [2, 3, 8, 10, 12].

2. Generalized transformation graphs Gab

The semitotal-point graph T2(G) of a graph G is a graph whose vertex set is
V (T2(G)) = V (G) ∪ E(G) and two vertices are adjacent in T2(G) if and only if (i)
they are adjacent vertices of G or (ii) one is a vertex of G and other is an edge of
G incident with it. It was introduced by Sampathkumar and Chikkodimath [11].
Recently some new graphical transformations were defined by Basavanagoud et al.
[1], which generalizes the concept of semitotal-point graph.

The generalized transformation graph Gab is a graph whose vertex set is
V (G) ∪E(G), and α, β ∈ V (Gab). The vertices α and β are adjacent in Gab if and
only if (∗) and (∗∗) holds:
(∗) α, β ∈ V (G), α, β are adjacent in G if a = + and α, β are not adjacent in G if
a = −. (∗∗) α ∈ V (G) and β ∈ E(G), α, β are incident in G if b = + and α, β are
not incident in G if b = −.

One can obtain the four graphical transformations of graphs as G++, G+−,
G−+ and G−−. The vertex vi of G

ab corresponding to a vertex vi of G is referred
to as point vertex and vertex ei of G

ab corresponding to an edge ei of G is referred
to as line vertex.
The following propositions will be useful in proof of our results.

Proposition 2.1. [1] Let G be a graph of order n and size m. Then the degree
of point vertex ui and line vertex ei in Gab are
(i) dG++(ui) = 2dG(ui) and dG++(ei) = 2
(ii) dG+−(ui) = m and dG+−(ei) = n− 2
(iii) dG−+(ui) = n− 1 and dG−+(ei) = 2
(iv) dG−−(ui) = n+m− 1− 2dG(ui) and dG−−(ei) = n− 2.

Proposition 2.2. [1] Let G be a graph of order n and size m. Then order of
Gab is n+m and
(i) Size of G++ = 3m
(ii) Size of G+− = m(n− 1)
(iii) Size of G−+ =

(
n
2

)
+m

(iv) Size of G−− = n(n−1)
2 +m(n− 3).
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In this paper, we obtain expressions for
∏

1,
∏

2 and
∏∗

1 of generalized
transformation graphs.

3. Results

Theorem 3.1. Let G be a graph of order n > 2 and size m. Then∏
1(G

+−) = m2n(n− 2)2m.

Proof. Since G+− has m+ n vertices.∏
1(G

+−) =
∏

u∈V (G+−)

dG+−(u)2

=
∏

u∈V (G+−)∩V (G)

dG+−(u)2
∏

ei∈V (G+−)∩E(G)

dG+−(ei)
2.

From Proposition 2.1, we have∏
1(G

+−) =
∏

u∈V (G)

m2
∏

ei∈E(G)

(n− 2)2

= m2n(n− 2)2m. �

Theorem 3.2. Let G be a graph of order n > 2 and size m > 1. Then∏
2(G

+−) = mmn(n− 2)m(n−2).

Proof. Since G+− has m+ n vertices and m(n− 1) edges.∏
2(G

+−) =
∏

uv∈E(G+−)

[dG+−(u)dG+−(v)]

=
∏

uv∈E(G+−)∩E(G)

[dG+−(u)dG+−(v)]
∏

uv∈E(G+−)−E(G)

[dG+−(u)dG+−(v)].

From Proposition 2.1, we have∏
2(G

+−) =
∏

uv∈E(G)

mm
∏

uv∈E(G+−)−E(G)

m(n− 2)

= m2m[m(n− 2)]m(n−1)−m

= mmn(n− 2)m(n−2). �

Theorem 3.3. Let G be a graph of order n and size m > 1. Then∏∗
1(G

+−) = (2m)m(m+ n− 2)m(n−2).

Proof. Since G+− has n+m vertices and m(n− 1) edges.∏∗
1(G

+−) =
∏

uv∈E(G+−)

[dG+−(u) + dG+−(v)]

=
∏

uv∈E(G+−)∩E(G)

[dG+−(u)+dG+−(v)]
∏

uv∈E(G+−)−E(G)

[dG+−(u)+dG+−(v)]

From Proposition 2.1, we have∏∗
1(G

+−) =
∏

uv∈E(G)

(m+m)
∏

uv∈E(G+−)−E(G)

(m+ n− 2)

= (2m)m(m+ n− 2)m(n−2). �
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Theorem 3.4. Let G be a graph of order n and size m. Then∏
1(G

−+) = 4m(n− 1)2n.

Proof. Since G−+ has m+ n vertices.∏
1(G

−+) =
∏

u∈V (G−+)

dG−+(u)2

=
∏

u∈V (G−+)∩V (G)

dG−+(u)2
∏

ei∈V (G−+)∩E(G)

dG−+(ei)
2.

From Proposition 2.1, we have∏
1(G

−+) =
∏

u∈V (G)

(n− 1)2
∏

ei∈E(G)

22

= 4m(n− 1)2n. �

Theorem 3.5. Let G be a graph of order n and size m. Then∏
2(G

−+) = 4m(n− 1)n(n−1).

Proof. Since G−+ has m+ n vertices and
(
n
2

)
+m edges.∏

2(G
−+) =

∏
uv∈E(G−+)

[dG−+(u)dG−+(v)]

=
∏

uv∈E(G−+)∩E(G)

[dG−+(u)dG−+(v)]
∏

uv∈E(G−+)−E(G)

[dG−+(u)dG−+(v)].

From Proposition 2.1, we have∏
2(G

−+) =
∏

uv∈E(G)

(n− 1)(n− 1)
∏

uv∈E(G−+)−E(G)

2(n− 1)

= [n− 1][n(n−1)−2m]22m(n− 1)2m

= 4m(n− 1)n(n−1). �

Theorem 3.6. Let G be a graph of order n and size m. Then∏∗
1(G

−+) = [2(n− 1)][(
n
2)−m](n+ 1)2m.

Proof. Since G−+ has n+m vertices and [
(
n
2

)
+m] edges.∏∗

1(G
−+) =

∏
uv∈E(G−+)

[dG−+(u) + dG−+(v)]

=
∏

uv∈E(G−+)∩E(G)

[dG−+(u)+dG−+(v)]
∏

uv∈E(G−+)−E(G)

[dG−+(u)+dG−+(v)].

From Proposition 2.1, we have∏∗
1(G

−+) =
∏

uv∈E(G)

(n− 1 + n− 1)
∏

uv∈E(G−+)−E(G)

(n− 1 + 2)

= [2(n− 1)][(
n
2)−m](n+ 1)2m. �

Theorem 3.7. Let G be a graph of order n and size m. Then∏
1(G

−−) = (n− 2)2m
∏

u∈V (G) and dG(u) ̸=n−1

(n+m− 1− 2dG(u))
2.
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Proof. Since G−− has m+ n vertices.∏
1(G

−−) =
∏

u∈V (G−−)

dG−−(u)2

=
∏

u∈V (G−−)∩V (G)

dG−−(u)2
∏

ei∈V (G−−)∩E(G)

dG−−(ei)
2.

From Proposition 2.1, we have∏
1(G

−−) =
∏

u∈V (G)

(n+m− 2dG(u)− 1)2
∏

ei∈E(G)

(n− 2)2∏
1(G

−−) = (n−2)2m
∏

u∈V (G) and dG(u)̸=n−1

[n+m−1−2dG(u)]
2. �

Theorem 3.8. Let G be a graph of order n and size m. Then∏
2(G

−−) =
[ ∏
uv ̸∈E(G)

[n+m− 1− 2dG(u)][n+m− 1− 2dG(v)]
]

[
(n− 2)2m

∏
v∈V (G) and dG(v)̸=n−1

[n+m− 1− 2dG(v)]
m−dG(v)

]
.

Proof. Since G−− has m+ n vertices and n(n−1)
2 +m(n− 3) edges.∏

2(G
−−) =

∏
uv∈E(G−−)

[dG−−(u)dG−−(v)]

=
∏

uv∈E(G−−)∩E(G)

[dG−−(u)dG−−(v)]
∏

uv∈E(G−−)−E(G)

[dG−−(u)dG−−(v)]

From Proposition 2.1, we have∏
2(G

−−) =
∏

uv∈E(G)

[n+m−1−2dG(u)][n+m−1−2dG(v)]
∏

uv∈E(G−−)−E(G)

(n−

2)[n+m− 1− 2dG(v)]∏
2(G

−−) =
[ ∏
uv ̸∈E(G)

[n+m− 1− 2dG(u)][n+m− 1− 2dG(v)]
]

[
(n− 2)2m

∏
v∈V (G) and dG(v) ̸=n−1

[n+m− 1− 2dG(v)]
m−dG(v)

]
. �

Theorem 3.9. Let G be a graph of order n and size m. Then∏∗
1(G

−−) =
∏

uv ̸∈E(G)

2[n+m−1−dG(u)−dG(v)]
∏

v∈V (G)

[2n+m−3−2dG(v)]
m−dG(v).

Proof. Since G−− has n+m vertices and n(n−1)
2 +m(n− 3) edges. Then∏∗

1(G
−−) =

∏
uv∈E(G−−)

[dG−−(u) + dG−−(v)]

=
∏

uv∈E(G−−)∩E(G)

[dG−−(u)+dG−−(v)]
∏

uv∈E(G−−)−E(G)

[dG−−(u)+dG−−(v)]

From Proposition 2.1, we have

=
∏

uv∈E(G)

[n+m− 1− 2dG(u) + n+m− 1− 2dG(v)]
∏

uv∈E(G−−)−E(G)

[n− 2 + n+

m− 1− 2dG(v)]
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and∏∗
1(G

−−) =
∏

uv ̸∈E(G)

2[n+m−1−dG(u)−dG(v)]
∏

v∈V (G)

[2n+m−3−2dG(v)]
m−dG(v).

�

The expressions for
∏

1,
∏

2 and
∏∗

1 of semitotal point graph G++ was obtained
in [2]. We nevertheless state it for the sake of completeness:

Theorem 3.10. [2]Let G be a graph of order n and size m. Then

(1)
∏

1(G
++) = 4n+m

∏
1(G)

(2)
∏

2(G
++) = 64m

∏
1(G)

∏
2(G)

(3)
∏∗

1(G
++) = 8m

∏∗
1(G)

∏
u∈V (G)

[1 + dG(u)]
dG(u).
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[10] T. Réti and I. Gutman. Relations between ordinary and multiplicative Zagreb indices, Bull.

Inter. Math. Virt. Inst., 2(2)(2012), 133-140.
[11] E. Sampathkumar and S. B. Chikkodimath. Semitotal graphs of a graph-I, J. Karnatak

Univ. Sci., 18(1973), 274-280.
[12] W. Shaohui and W. Bing. Multiplicative Zagreb indices of k-tree, Discrete Applied Math.,

180(2015), 168-175.
[13] R. Todeschini and V. Consonni. New local vertex invariants and molecular descriptors based

on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem., 64(2010),
359-372.



MULTIPLICATIVE ZAGREB INDICES OF GENERALIZED ... 179

[14] R. Todeschini, D. Ballabio and V. Consonni. Novel molecular descriptors based on functions
of new vertex degrees. In: I. Gutman and B. Furtula, (Eds.), Novel molecular structure
descriptors - Theory and applications I. (pp. 73-100). Kragujevac: Univ. Kragujevac 2010.
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