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ABSTRACT 
 

A graph � is said to be non-neighbour irregular graph if no two nonadjacent vertices of � have same degree. 

In this paper, we obtain non-neighbour irregular derived graphs such as complement graphs, line graphs, 

jump graphs, subdivision graphs, paraline graphs, semitotal-point graphs, semitotal-line graphs, total graphs, 

quasi-total graphs and quasivertex-total graphs. 
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1 Introduction  

 
Throughout this paper, we consider only undirected, finite and simple graphs. Let � be such graph with 

vertex set ����. The degree of a vertex � ∈ ���� is the number of vertices adjacent to � and is denoted by 

�����. The neighbourhood of a vertex 	 ∈ ���� is the set of vertices which are adjacent to 	 and is denoted 

by 
�	�. Let � be a graph with � vertices and � edges. Notations and terminology that we do not define 

here can be found in [1,2]. 

 

A graph � is said to be regular if all its vertices have the same degree. A connected graph � is said to be 

highly irregular [3] if each neighbour of any vertex has different degree. It is called k-neighbourhood 

regular graph [4] if each of its vertex is adjacent to exactly -vertices of the same degree. The graph � is 

said to be neighbourly irregular graph [5], abbreviated as NI graph, if no two adjacent vertices of � have the 

same degree. The graph � is said to be non-neighbour irregular if no two nonadjacent vertices of � have the 

same degree. This concept was introduced in [6] and constructed NNI graphs of order � �  � 1 and �                   

for a given � and a partition of � with  distinct parts and proved some properties of NNI graphs                       

related to clique graph, vertex covering number, edge covering number, vertex independence                         

number, edge independence number and domination number. The Fig. 1. depicts an examples of NNI 

graphs.  
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Fig. 1. NNI graphs 

 

2 Derived Graphs 

 
In this paper we considered the following graphs derived from the parent graph �:   

 

1. The complement of �, denoted by �, is a graph which has the same vertex set as �, in which two 

vertices are adjacent if and only if they are nonadjacent in � and ����� = � � 1 � ����� holds for 

all � ∈ ����.  

2. The line graph ���� of � is the graph [7] whose vertex set is ���� in which two vertices are 

adjacent if and only if they are adjacent in �. If � � 	� is an edge of � then �������� � ���	� �

����� � 2.  

3. The jump graph ���� of � is the graph [8] whose vertex set is ���� in which two vertices are 

adjacent if and only if they are nonadjacent in �. Readers interested in more information on jump 

graph can be referred to [8,9,10].  

4. The subdivision graph ���� of a graph � [1] is obtained from � by inserting a new vertex into 

every edge of �.  

5. The paraline graph ����� is a line graph of subdivision graph of �.  

6. The semitotal-point graph ����� as the graph [11] whose vertex set is ���� ∪ ���� where two 

vertices are adjacent if and only if (i) they are adjacent vertices of � or (ii) one is a vertex of � and 

other is an edge of � incident with it. If 	 is a vertex of �, then �������	� � 2���	�. If � is an edge 

of �, then ��������� � 2.  

7. The semitotal-line graph ����� as the graph [11] whose vertex set is ���� ∪ ���� where two 

vertices are adjacent if and only if (i) they are adjacent edges of � or (ii) one is a vertex of � and 

other is an edge of � incident with it. If 	 is a vertex of �, then �� ����	� � ���	�. If � � 	� is an 

edge of �, then �� ������ � ���	� � �����.  

8. The total graph ���� as the graph [1] whose vertex set is ���� ∪ ���� where two vertices are 

adjacent if and only if (i) they are adjacent vertices of � or (ii) they are adjacent edges of � or (iii) 

one is a vertex of � and other is an edge of � incident with it. If 	 is a vertex of �, then ������	� �

2���	�. If � � 	� is an edge of �, then �������� � ���	� � �����.  

9. The quasi-total graph ���� as the graph [12] whose vertex set is ���� ∪ ���� where two vertices 

are adjacent if and only if (i) they are nonadjacent vertices of � or (ii) they are adjacent edges of � 

or (iii) one is a vertex of � and other is an edge of � incident with it. If 	 is a vertex of �, then 

�!����	� � � � 1. If � � 	� is an edge of �, then �!������ � ���	� � �����. Readers interested 

in more information on quasi-total graph can be referred to [12,13,14].  

10. The quasivertex-total graph "��� as the graph [15] whose vertex set is ���� ∪ ���� where two 

vertices are adjacent if and only if (i) they are adjacent vertices of � or (ii) they are nonadjacent 

vertices of � (iii) they are adjacent edges of � or (iv) one is a vertex of � and other is an edge of � 

incident with it. If 	 is a vertex of �, then �#����	� � � � 1 � ���	�. If � � 	� is an edge of �, 

then �#������ � ���	� � �����.  

 

In Fig. 2 self-explanatory examples of these derived graphs are depicted.  
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Fig. 2. Graph $ and its derived graphs 

 

Fig. 2 various graphs derived from the graph �. The vertices of these derived graphs (except the paraline 

graph ��), corresponding to the vertices of the parent graph �, are indicated by circles. The vertices of these 

graphs corresponding to the edges of the parent graph � are indicated by squares.  
 

Theorem 2.1. [16] For any graph �, its line graph ���� is 
% graph if and only if 
�	� contains all 

vertices of different degree for all 	 ∈ ����.  
  

Theorem 2.2. [6]  If a graph � is NNI graph, then � is not NNI graph. 
 

In this paper we obtain non-neighbour irregular derived graphs such as complement graphs, line graphs, 

jump graphs, subdivision graphs, paraline graphs, semitotal-point graphs, semitotal-line graphs, total graphs, 

quasi-total graphs and quasivertex-total graphs. 

 

3 Results 
  
Theorem 3.1. For any graph �, the complement graph � is NNI graph if and only if � is NI graph.  

 

Proof. Let � be NNI graph. To prove � is NI graph, i. e. to prove every pair of adjacent vertices in � have 

different degree, on the contrary, suppose two adjacent vertices 	 and � of � have the same degree, that is, 

���	� � �����. Therefore � � 1 � ���	� � � � 1 � �����. 
 

This implies that, ���	� � �����. Thus, � is not NNI graph, a contradiction. Hence � is NI graph. 

 

Conversely, Let � be NI graph. Therefore for every pair of adjacent vertices 	 and � of �, ���	� & �����. 

Therefore � � 1 � ���	� & � � 1 � �����. This implies that, ���	� & �����. Thus, � is NNI graph.  
 

Theorem 3.2. For any graph �, the line graph ���� is NNI graph if and only if ����\
�	� contains all 

vertices of different degree for all 	 ∈ ����.  
 

Proof. Let ���� be NNI graph. To prove that ����\
�	� contains all vertices of different degree for all 

	 ∈ V���, on the contrary, suppose ����\
�	� contains two vertices � and ) such that ����� � ���)�, 

where �,) ∈ ����\
�	�. Then there exists two nonadjacent vertices �� � 	� and �� � 	) in ���� such 

that ��������� � ���������. Thus, ���� is not NNI graph, a contradiction. Hence ����\
�	� contains all 

vertices of different degree. 
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Conversely, ����� & ���)�, for all �,) ∈ ����\
�	� and 	 ∈ ����. Therefore ���	� � ����� � 2 &

���	� � ���)� � 2. That is, ��������� � ���������, where �� � 	� and �� � 	) are nonadjacent in ����. 

Hence ���� is NNI graph.  

  

From Theorems 2.2 and 3.2, we have the following corollary.  

 

Corollary 3.3. If the line graph ���� is NNI graph, then the jump graph ���� is not NNI graph.  

  

From Theorems 2.1 and 3.1, we have the following corollary.  

 

Corollary 3.4. For any graph �, the jump graph ���� is NNI graph if and only if ���� is NI graph.  

 

Theorem 3.5. For any graph �, the subdivision graph ���� is not NNI graph.  

 

Proof. We prove the result by considering the following cases: 

 

Case 1. If � � +�, then ���� � �, which is not NNI graph. 

 

Case 2. If � & +�, then there exists at least two nonadjacent vertices �- � �.�/ and �0 � �/�1 in ���� 

with �2������� � �2������� � 2. Therefore ���� is not NNI graph.  

 

Theorem 3.6. For any graph � & +�, the paraline graph ����� is not NNI graph.  

 

Proof. Since � & +�, then there exists at least two nonadjacent vertices 	 and � in ����� with �!�����	� �

�!�������. Therefore ����� is not NNI graph.  

 

Theorem 3.7. For any graph � & +�, the semitotal-point graph ����� is not NNI graph.  

 

Proof. Since � & +�, then there exists at least two nonadjacent vertices �- � �.�/ and �0 � �/�1  in ����� 

with ���������� � ���������� � 2. Therefore ����� is not NNI graph.  

 

Theorem 3.8. For any graph �, the semitotal-line graph ����� is NNI graph if and only if all vertices of � 

have different degree, ���� is NNI graph and ���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈

����.  
 

Proof. Let ���� � {��, ��, . . . . , �6} be the vertex set and ���� � {��, ��, . . . . , �8} be the edge set of �. 

Suppose all vertices of � have different degree, ���� is NNI graph and ���)-� & ���	-� � ����-�, ∀ 

)- ∈ ���� and �- � 	-�- ∈ ����. In ����� the vertices 9 and : are nonadjacent, then 9, : ∈ ���� or 

9, : ∈ ����, where 9 and : are nonadjacent in � or 9 ∈ ���� and : ∈ ����, where 9 and : are nonincident 

in �. 

 

(a)  9, : ∈ ����. Since d��9� & ���:�, �� ����9� � ���9� & ���:� � �� ����:�. 

(b)  9, : ∈ ����, where 9 and : are nonadjacent in �. Let 9 � �-�0 and : � �<�1, so that 9 and : are 

nonadjacent in �����. Therefore ����-�+����0� � 2 & ����<�+����1� � 2, as ���� is NNI graph. 

This implies that �� ����9� & �� ����:�. 

(c)  9 ∈ ���� and : ∈ ����, where 9 and : are nonincident in �. Let �- � 	-�- ∈ ���� and )- ∈ ����. 
 

�� �����-� � ���	-� � ����-� 

     & ���)-�, as ���)-� & ���	-� � ����-� 

     & �� ����)-�.  
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Thus in all cases ����� is NNI graph. 

 

Conversely, suppose ����� is NNI graph. We have to prove that all vertices of � have different degree, ���� 

is NNI graph and ���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈ ����. If all vertices of � does 

not have same degree in �, then there exists at least two nonadjacent vertices �-  and 	- in ����� such that 

�� �����-� � �� ����	-�. A contradiction to ����� is NNI graph. 

 

Suppose ���� is not NNI graph, then there exists two nonadjacent vertices �- � �.�/ and �0 � �<�1 in ���� 

with �������-� � �������0�. Therefore ����.� � ����/� � ����<� � ����1�. This implies that, �� �����-� �

�� �����0�. A contradiction to ����� is NNI graph. 

 

Suppose ���)-� � ���	-� � ����-�, for some )- ∈ ���� and �- � 	-�- ∈ ����. Let �- � 	-�- be an edge 

of �. Then �� �����-� � ���	-� � ����-� � ���)-� � �� ����)-�. Again a contradiction to ����� is NNI 

graph.  

 

Theorem 3.9. For any graph �, the total graph ���� is NNI graph if and only if � is NNI graph, ���� is 

NNI graph and 2���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈ ����.  
 

Proof. Let ���� � {��, ��, . . . . , �=} be the vertex set and ���� � {��, ��, . . . . , �8} be the edge set of �. 

Suppose � is NNI graph, ���� is NNI graph and 2���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- �

	-�- ∈ ����. In ���� the vertices 9 and : are nonadjacent, then 9, : ∈ ����, where 9 and : are nonadjacent 

in � or 9, : ∈ ����, where 9 and : are nonadjacent in � or 9 ∈ ���� and : ∈ ����, where 9 and : are 

nonincident in �. 

 

(a) 9, : ∈ ����, where 9 and : are nonadjacent in �. Since ���9� & ���:�, �>����9� � 2���9� &

2���:� � ������:�. 

(b)  9, : ∈ ����, where 9 and : are nonadjacent in �. Let 9 � �-�0 and : � �<�1, so that 9 and : are 

nonadjacent in ����. Therefore ����-�+����0� � 2 & ����<�+����1� � 2, as ���� is NNI graph. 

This implies that, ������9� & ������:�. 

(c)  9 ∈ ���� and : ∈ ����, where 9 and : are nonincident in �. Let �- � 	-�- ∈ ���� and )- ∈ ����. 
 

�������-� � ���	-� � ����-� 

& ���)-�, as 2���)-� & ���	-� � ����-� 

& ������)-�.  

 

Thus in all cases ���� is NNI graph. 

 

Conversely, suppose ���� is NNI graph. We have to prove that � is NNI graph, ���� is NNI graph and 

2���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈ ����. If � is not NNI graph, then there exists at 

least two nonadjacent vertices 	-  and �- , such that ���	-� � ����-�. This implies ������	-� � �������-�. A 

contradiction to ���� is NNI graph. 

 

Suppose ���� is not NNI graph, then there exists two nonadjacent vertices �- � �.�/ and �0 � �<�1 in ���� 

with �������-� � �������0�. Therefore ����.� � ����/� � ����<� � ����1�. This implies that, �������-� �

�������0�. A contradiction to ���� is NNI graph. 

 

Suppose 2���)-� � ���	-� � ����-�, for some )- ∈ ���� and �- � 	-�- ∈ ����. Let �- � 	-�- be an edge 

of �. Then �������-� � ���	-� � ����-� � 2���)-� � ������)-�. Again a contradiction to ���� is NNI 

graph.  
 

Theorem 3.10. For any graph �, the quasi-total graph ���� is not NNI graph.  
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Proof. We prove the result by considering the following cases: 

 

Case 1. If � � +�, then ���� � �, which is not NNI graph. 

 

Case 2. If � & +�, then there at least exists two nonadjacent vertices �-  and 	-  in ���� with 

�!�����-� � �!����	-� � � � 1. Therefore ���� is not NNI graph.  

 

Theorem 3.11. For any graph �, the quasivertex-total graph "��� is NNI graph if and only if ���� is NNI 

graph and � � 1 � ���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈ ����.  
 

Proof. Let ���� � {��, ��, . . . . , �6} be the vertex set and ���� � {��, ��, . . . . , �8} be the edge set of �. 

Suppose ���� is NNI graph and ���)-� � � � 1 � ���)-� & ���	-� � ����-�, ∀ )- ∈ ���� and �- �

	-�- ∈ ����. In "��� the vertices 9 and : are nonadjacent, then 9, : ∈ ����, where 9 and : are 

nonadjacent in � or 9 ∈ ���� and : ∈ ����, where 9 and : are nonincident in �. 

 

(a) 9, : ∈ ����, where 9 and : are nonadjacent in �. Let 9 � �-�0 and : � �<�1, so that 9 and : are 

nonadjacent in "���. Therefore ����-�+����0� � 2 & ����<�+����1� � 2 as ���� is NNI graph. 

This implies that, �#����9� & �#����:�. 

(b) 9 ∈ ���� and : ∈ ����, where 9 and : are nonincident in �. Let �? � 	-�- ∈ ���� and )- ∈ ����. 
 

�!�����-� � ���	-� � ����-� 

     & � � 1 � ���)-�, as � � 1 � ���)-� & ���	-� � ����-� 

     & �#����)-�. 

 

Thus in all cases "��� is NNI graph. 

 

Conversely, suppose "��� is NNI graph. We have to prove that ���� is NNI graph and � � 1 � ���)-� &

���	-� � ����-�, ∀ )- ∈ ���� and �- � 	-�- ∈ ����. Suppose ���� is not NNI graph, then there exists two 

nonadjacent vertices �- � �.�/ and �0 � �<�1 in ���� with �������-� � �������0�. Therefore ����.� �

����/� � ����<� � ����1�. This implies that, �#�����-� � �#�����0�. A contradiction to "��� is NNI 

graph. 

 

Suppose � � 1 � ���)-� � ���	-� � ����-�, for some )- ∈ ���� and �- � 	-�- ∈ ����. Let �- � 	-�- be 

an edge of �. Then �#�����-� � ���	-� � ����-� � � � 1 � ���)-� � �#����)-�. Again a contradiction to 

"��� is NNI graph.  
 

4 Conclusion  

 
In this paper, we characterize the non-neighbour irregular derived graphs such as complement graphs, line 

graphs, jump graphs, semitotal-line graphs, total graphs, and quasivertex-total graphs. In addition we have 

shown that for any graph �, subdivision graphs and quasi-total graphs are not non-neighbour irregular 

graphs. Further we proved that for any graph G & K�, paraline graphs and semitotal-point graphs are not 

non-neighbour irregular graphs. These results can be extended for any other graph valued functions. 
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