

Contents lists available at <u>www.innovativejournal.in</u>

ASIAN JOURNAL OF CURRENT ENGINEERING AND MATHS

Journal homepage: http://innovativejournal.in/ajcem/index.php/ajcem

CrossMark

ON PRE GENERALIZED PRE REGULAR WEAKLY IRRESOLUTE AND STRONGLY PGPRW-CONTINUOUS MAPS IN TOPOLOGICAL SPACES.

R.S.Wali¹, Vivekananda Dembre²

¹Department of Mathematics, Bhandari and Rathi College Guledagudd-587203,Karnataka,India. ²Department of Mathematics, Rani Channamma University, Belagavi-591156, Karnataka,India.

ARTICLE INFO

Corresponding Author

R.S.Wali, Department of Mathematics, Bhandari and Rathi College Guledagudd-587203,Karnataka,India. <u>rswali@rediffmail.com</u>

CROSSREF.ORG THE CIRTEND LINKING BROKBONE DOI:<u>http://dx.doi.org/10.15520/ajcem</u> .2016.vol5.iss2.53.pp.

ABSTRACT

The aim of this paper is to introduce a new type of maps called pgprwirresolute maps,stronglypgprw-continuous maps and study some of these properties.

AMS Mathematical Subject classification(2010):54A05,54C05.

Keywords:Pgprw-closed-sets, pgprw-open-sets, pgprw-continuous-maps, pgprw-irresolutemaps, strongly pgprw-continuous maps.

©2016, AJCEM, All Right Reserved.

INTRODUCTION

The concept of irresolute map was introduced byHildebrand[5] and strongly continuous functions was introduced by Levine[6]. Later Wali and Benchalli[2] introduced and studiedrw-irresolute maps and strongly rw-continuous maps.In this section we introduce the concept of pgprw –irresolute maps and strongly pgprwcontinuous maps in topological space and investigate some of their properties.

2.PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

(i)Semi-open set [1] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.

(ii)Regular ω - closed (briefly $r\omega$ -closed)set [2] if cl(A) \subseteq U whenever A \subseteq U and U is regular

semi- open in X.

(iii) Pre generalized pre regular ω eakly closed set[3](briefly pgpr ω -closed set) if pCl(A) \subseteq U whenever A \subseteq U and U is rg α open in (X, τ).

(iv)pre generalized pre-regular ω eakly open(briefly pgpr ω -open)[4]set in X if A^c is

 $pgpr\omega$ -closed in X.

Definition 2.2A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to

(i)Semi continuos map[1] if $f^{-1}(V)$ is a semi-closed of (X,τ) for every closed set of (Y,σ) .

(ii)irresolute map [5] if $f^{-1}(V)$ is semi- closed in X for every semi-closed subset V of Y.

(iii)Strongly-continuous map[6]if $f^{-1}(V)$ is Clopen (both open and closed) in X for every subset V of Y.

(iv)A function f from a topological space X into a topological space Y is called pgprw-continuous map(pgprw-Continuous)[7] if $f^{-1}(V)$ is pgprw-Closed set in X for every closed set V in Y.

3.Pgprw-irresolute and Strongly Pgprw-Continuous functions

Definition 3.1: A function f from a topological space X into a topological space Y is called pgprw-irresolute (pgprw-irresolute) map if $f^{-1}(V)$ is pgprw-Closed set in X for every pgprw-closed set V in Y.

Definition 3.2: A function f from a topological space X into a topological space Y is called strongly pgprw continuous (strongly pgprw–continuous) map if $f^{-1}(V)$ is closed set in X for every pgprw–closed set V in Y.

Theorem 3.3: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is pgprw-irresolutemap, if and only if the inverse image

 $f^{-1}(V)$ is pgprw–open set in X for every pgprw–open set V in Y.

Proof: Assume that f: $X \rightarrow Y$ is pgprw–irresolute map. Let G be pgprw–open in Y. The G^c is pgprw–closed in Y. Since f is pgprw– irresolute, f⁻¹(G^c) is pgprw–closed in X.

But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is pgprw-open in X. Converserly, Assume that the inverse image of each open set in Y is pgprw-open in X. Let F be any pgprw-closed set in Y. By assumption $f^{-1}(F^c)$ is pgprw-open in X. But $f^{-1}(F^c)$ = $X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is pgprw-open in X and so $f^{-1}(F)$ is pgprw-closed in X. Therefore f is pgprw- irresolute map.

Theorem 3.4: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is pgprw–irresolute map, then it is pgprw–continuous map but not conversely. **Proof:** Let f: $X \rightarrow Y$ be pgprw–irresolute map. Let F be any closed set in Y. Then F is pgprw–closed in Y. Since f is

pgprw–irresolute map, the inverse image f⁻¹(F) is pgprw– closed set in X. Therefore f is pgprw–continuous map.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5: $X=\{a,b,c,d\}, Y=\{a,b,c\}, \tau = \{X, \phi,\{a\},\{b\},\{a,b,\},\{a,b,c\}\} \sigma = \{Y, \phi,\{a\}\}, \{z,b\},\{z,b\}$

Let map f: $X \rightarrow Y$ defined by , f(a)=b , f(b)=a , f(c)=a , f(d)=c then f is pgprw-continuous map but f is not pgprwirresolute map, as pgprw-closed set F= {b} in Y, then f⁻¹(F)={a} in X, which is not pgprw-closed set in X.

Theorem 3.6: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two maps. Then

(i) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is pgprw-irresolute map if g is pgprw-irresolute map and f is pgprw-irresolute map.

(ii) g o f : $(X, \tau) \rightarrow (Z, \eta)$ is pgprw–continuous map if g is pgprw–continuous map and f is pgprw–irresolute map. **Proof:**

(i) Let U be a pgprw–open set in (Z, η) . Since g is pgprw– irresolute map, g⁻¹(U) is pgprw–open set in (Y, σ) . Since f is pgprw–irresolute map, f⁻¹(g⁻¹(U)) is apgprw–open set in (X, τ) .

Thus (gof) ${}^{-1}(U) = f^{-1}(g^{-1}(U))$ is an pprw-open set in (X, τ) and hence gof is ppprw-irresolute map.

(iii) Let U be a open set in (Z, η) . Since g is continuous map, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is pgprw-open, $g^{-1}(U)$ is pgprw-open set in (Y, σ) . Since f is pgprw- irresolute map,

 $f^{-1}(g^{-1}(U))$ is an pgprw-open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an pgprw-open set in (X, τ) and hence gof is pgprw-continuous map.

Theorem 3.7: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are Topological-space .Where "every pgprw closed subset is closed" Then the following are equivalent:

(i) f is pgprw-irresolute map

(ii) f is pgprw-continuous map.

Proof:

(i) implies (ii) follows from theorem 3.4

(ii) implies (i) Let F be a pgprw closed set in (Y, σ) then F is a closed set in (Y, σ)

by hypothesis. Since f is a pgprw-continuousmap, $f^{-1}(F)$ is a pgprw closed set in $(X,\tau),$ Therefore

f is pgprw-irresolute map.

Remark 3.8:The following examples show that the notation of irresolute maps and pgprw-irresolute maps are independent.

Example: X={a,b,c}, Y={a,b,c} $\tau = \{X, \phi, \{a\}\} \& \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\},\$

then the identity map f:(X, τ) (Y, σ -) is pgprw-irresolute map but it is not-irresolute map as inverse image of the semi-open set {b} in (Y, σ) is {b} in X, which is not semiopen set in (X, τ)

Example: X={a,b,c}, Y={a,b,c} τ = {X, ϕ ,{a},{b},{a,b}} σ ={Y, ϕ ,{a}},

then the identity mapf:(X, τ) (Y, \rightarrow) is-irresolute map but it is notpgprw-irresolute map, as inverse image of the pgprw-closed set {b} in (Y, σ) is {b} in X , which is not pgprw closedset in (X, τ).

Theorem 3.9: Let f: $(X, \tau) \rightarrow (Y,\sigma)$ is strongly pgprwcontinuous map if and only if $f^{-1}(G)$ is open set in X for every pgprw-open set G in Y.

Proof : Assume that f: $X \rightarrow Y$ is strongly pgprw-continuous map. Let G be pgprw-open in Y. The G^c is pgprw-closed in Y. Since f is strongly pgprw-continuous map, $f^{-1}(G^c)$ is closed in X.

But $f^{-1}(G^c) = X - f^{-1}(G)$, Thus $f^{-1}(G)$ is open in X.

Converserly, Assume that the inverse image of each open set in Y is pgprw–open in X. Let F be any pgprw–closed set in Y. By assumption F^c is pgprw–open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$.

Thus X- $f^{-1}(F)$ is open in X and so $f^{-1}(F)$ is closed in X. Therefore f is strongly pgprw–continuous map.

Theorem 3.10: Let f: $(X, \tau) \rightarrow (Y,\sigma)$ is strongly pgprwcontinuous map then it is continuous map.

Proof: Assume that f: $(X, \tau) \rightarrow (Y,\sigma)$ is strongly pgprwcontinuous map, Let F be closed set in Y. As every closed is pgprw-closed, F is pgprw-closed in Y. Since f is strongly pgprw-continuous mapthen f⁻¹(F) is closed set in X. Therefore f is continuous map.

Example 3.11: $X=Y=\{a,b,c,d\}, \tau = \{X, \varphi,\{a\},\{b\},\{a,b,c\}\}$ $\sigma = \{Y, \varphi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$.Let map f: $X \rightarrow Y$ defined by , f(a)=a, f(b)=b, f(c)=b, f(d)=b. then f is continuous but f is not strongly pgprw-continuous, since forpgprw-closed set $F=\{a,c,d\}$ in Y, then f⁻¹(F)= $\{a\}$ in X, which is not closed set in X.

Theorem: 3.12:Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are Topological-space .Where "every pgprw closed subset is closed" Then the following are equivalent: (i) f is strongly pgprw-continuous map(ii) f is continuous map.

Proof:

(i) =>(ii) Let U be any open set in (Y,σ) . Since every open set is pgprw-open, U is pgprw-open in (Y,σ) . Then $f^{-1}(U)$ is open in (X,τ) . Hence f is continuous map.

(ii) =>(i) Let U be any pgprw-open set in (Y,σ) . Since (Y,σ) is a topoogical-space, U is open in (Y,σ) . Since f is continuous map.Then f⁻¹(U) is open in (X,τ) . Hence f is strongly pgprw-continuous map.

Theorem 3.13:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly continuous map then it is strongly pgprw–continuous map.

Proof:Assume that f: $X \rightarrow Y$ is strongly continuous map. Let G be pgprw-open in Y and also it is any subset of Y since f is strongly continuous map, f⁻¹(G) is open (and also closed) in X. f⁻¹(G) is open in X Therefore f is strongly pgprw-continuous map.

Theorem 3.14:Let f: $(X, \tau) \rightarrow (Y,\sigma)$ is strongly pgprwcontinuous map then it is pgprw-continuous map.

Proof: Let G be open in Y, every open is pgprw-open, G is pgprw-open in Y, since f is strongly pgprw-continuous map, $f^{-1}(G)$ is open in X. and therefore $f^{-1}(G)$ is pgprw-open in X. Hence f is pgprw-continuous map.

Theorem 3.15: In discrete space, a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly pgprw-continuous map then it is strongly continuous map.

Proof: F be any subset of Y, in discrete space, Every subset F in Y is both open and closed , then subset F is both pgprw-open or pgprw-closed, i) let F is pgpr ω -closed in Y, since f is strongly pgpr ω -continuous map, then f⁻¹(F) is closed in X. ii) let F is pgprw-open in Y, since f is strongly pgprw-continuous map, then f⁻¹(F) is open in X. Therefore f⁻¹(F) is closed and open in X. Hence f is strongly continuous map.

Theorem 3.16 :Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

(i) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly pgprw-continuous map if g is strongly pgprw-continuous map and f is strongly pgprw-continuous map.

(ii) g o f : $(X, \tau) \rightarrow (Z,\eta)$ is strongly pgprw-continuous map if g is strongly pgprw-continuous map and f is continuous map.

(iii) g o f : $(X, \tau) \rightarrow (Z,\eta)$ is pgprw-irresolute map if g is strongly pgprw-continuous map and f is pgprw-continuous map.

(iv) g o f : $(X, \tau) \rightarrow (Z,\eta)$ is continuous map if g is pgprwcontinuous map and f is strongly pgprw-continuous map. **Proof:**

(i)Let U be a pgprw-open set in (Z, η) . Since g is strongly pgprw-continuous map, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is pgprw-open, $g^{-1}(U)$ is pgprw-open set in (Y, σ) . Since f is strongly pgprw-continuous map $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly pgprw-continuous map.

(ii)Let U be a pgprw-open set in (Z, η) . Since g is strongly pgprw-continuous map, $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous map $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) .

Thus (gof) $^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly pgprw–continuous map.

(iii)Let U be a pgprw-open set in (Z, η) . Since g is strongly pgprw-continuous map, $g^{-1}(U)$ is open setin (Y, σ) . Since f is pgprw-continuous map $f^{-1}(g^{-1}(U))$ is anpgprw-open set in (X, τ) .

Thus (gof) $^{-1}(U) = f^{-1}(g^{-1}(U))$ is any gprw-open set in (X, τ) and hence gof is pgprw-irresolute map.

(iv)Let U be open set in (Z, $\eta)$. Since g is pgprw-continuous map, $g^{-1}(U)$ is pgprw-open set in

(Y, σ).Since f is strongly pgprw–continuous map f⁻¹(g⁻¹(U)) is an open set in (X, τ).

Thus (gof) $^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is continuous map.

REFERENCES:

1. N .Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.

2. R.S.Wali,on some topics in general and fuzzy topological spaces; ph.d thesis,K.U.Dharwad(2007).

3.R.S.Wali& Vivekananda Dembre,On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.

4. R.S.Wali& Vivekananda Dembre, On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological Spaces Annals of Pure and Applied Mathematics ,Vol. 10, No.1, 2015;Published on 12 April 2015.

5.S.G.crossley and S.K.Hildebrand,Semi topological properties,Fund.math,74(1972),233-254.

6.N.Levine,Strongly continuity in topological spaces,amer.math.palermo,19(1978),20-28

7.R.S.Wali& Vivekananda Dembre, On Pre Generalized Pre Regular Weakly Continuous in Topological Spaces.

How to cite this article: Vivekananda Dembre, R.S.Wali, On Pre Generalized Pre Regular Weakly irresolute and Strongly pgprw-Continuous maps in Topological Spaces. **Asian Journal of Current Engineering and Maths**, [S.l.], v. 5, n. 2, p. 44-45, apr. 2016. ISSN 2277-4920. Available at:

<<u>http://innovativejournal.in/ajcem/index.php/ajcem/article/view/53</u>>. Date accessed: 18 Apr. 2016. doi:10.15520/ajcem.2016.vol5.iss2.53.pp.