

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2016; 2(5): 636-642 www.allresearchjournal.com Received: 13-03-2016 Accepted: 14-04-2016

RS Wali

Department of Mathematics, Bhandari and Rathi College Guledagudd-587203, Karnataka, India.

Vivekananda Dembre

Department of Mathematics, Rani Channamma University, Belagavi-591156, Karnataka, India.

Correspondence

RS Wali Department of Mathematics, Bhandari and Rathi College Guledagudd-587203, Karnataka, India.

(τ_i, τ_j) pgprw closed and open sets in bitopological spaces

RS Wali, Vivekananda Dembre

Abstract

In this paper, we introduce and investigate the concept of (τ_i, τ_j) -pgprw-closed sets which are introduced in a bitopological spaces in analogy with pgprw-closed sets in topological spaces. From now, τ –pcl(A) denotes the pre-closure of A of a relative to a topology τ and during this process some of their properties are obtained.

Keywords: pgprw-closedsets, pgprw-open sets, pgprw-closed set, (τ_i, τ_j) pgprw-open set **2000 Mathematics subject clssification:** 54A05,54E55.

1. Introduction

The triple (X,τ_1,τ_2) , where X is a set and τ_1,τ_2 are topologies on X is called a bitopological space. Kelly ^[1] initiated the systematic study of such spaces in 1963. Following the work of kelly on the bitopological spaces, various authors like Arya and Nour ^[2], Di maio and Noiri ^[3], Fukutate ^[4], Nagaveni ^[5], Maki,Sundaram and Balachandran ^[6], Shiek john ^[7],Sampath kumar ^[8], Patty ^[9], Arockiarani ^[10], Gnanambal ^[11], Reily ^[12], Rajamani and Viswanthan ^[13] and Popa ^[14] have turned their attention to the various concepts of topology by considering bitopological spaces.

2. Preliminaries

Let $i, j \in \{1, 2\}$ be fixed integers, in a bitopological spaces (X, τ_1, τ_2) a subset A of (X, τ_1, τ_2) is said to be

- (i) (i,j)-g-closed^[4] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is τ_i .
- (ii) (i,j)-rg-closed^[10] if τ_1 -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- (iii) (i,j)gpr-closed^[11] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- (iv) (i,j)wg-closed^[5] if τ_i -cl(A)(τ_i -int(A)) \subseteq U whenever A \subseteq U and U is τ_i .
- (v) (i,j)W-closed^[7] if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is semi-open in τ_i .
- (vi) (i,j)gp-closed^[15] if τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is τ_i .
- (vii) Let (X,P,L) be a bitopological space. We say that $A \subseteq X$ is p-semi-open ^[16] w.r.t L iff there exists a P open set $O \subseteq X$ s.t $O \subseteq A \subseteq L$ -cl(o).

Similarly $A \subseteq X$ is L-semi open w.r.t P iff there exists L open set $O \subseteq X$ s.t $O \subseteq A \subseteq p$ cl(o). Then A is said to be semi-open iff it is both P semi-open w.r.t L and L is semiopen w.r.t P.

(viii) In (X, τ_1, τ_2) A \subseteq X is said to be (i,j) pre-open (i,j) ^[17] p.o iff A \subseteq , τ_i int $(\tau_j - cl(A))$, (ix) i,j=1,2; i \neq j.

- (x) (i,j) rga-closed ^[18] if τ_i -acl(A) \subseteq U whenever A \subseteq U and U is ra-open in τ_i .
- (xi) Regular open set ^[19] if A = int(clA)) and a regular closed set if A = cl(int(A)).
- (xii)Regular generalized α-closed set(briefly,rgα-closed) ^[20]if αcl(A)⊆UwheneverA⊆Uand U is regular α-open in X.

(xiii) For a subset A of (X, τ), pgprw-closure of A is denoted by pgprw-cl(A) and defined as pgprw-cl(A)= \cap {G: A \subseteq G, G is pgprw-closed in (X, τ)} or \cap {G:A \subseteq G, G ϵ pgprw-C(X)}.

3.0 (τ_i , τ_j)pgprw closed sets and their basic properties.

In this section, we introduce the investigate the concept of $(\tau_{i,}, \tau_{j})$ pgprw-closed sets which are introduced in a bitopological spaces in analogy with pgprw-closed sets in topological spaces. From

Now on, τ _pcl(A) denotes the closure of A relative to a topology τ .

3.1 Definition: Let $i,j \in \{1,2\}$ be fixed integers, in a bitopological spaces (X, τ_1, τ_2) , a subset $A \subseteq X$

is said to be (τ_i, τ_j) pgprw-closed set if τ_j -pcl(A) \subseteq G whenever A \subseteq G and G ϵ rg α -open (X, τ_i)

We denote the family of all (i,j) pgprw-closed in a bitoplogical spaces (X, τ_1, τ_2) by $D_{pgprw}(\tau_i, \tau_j)$.

3.2 Remark: By setting $\tau_{1=} \tau_2$ in definition 3.1, an (i,j) pgprw-closed set reduces to a pgprw-closed in X.

First we prove that the class of (i,j) pgprw-closed sets properly lies between the class of

(i,j) pre-closed sets and the class of (i,j) gpr-closed sets.

3.3 Theorem: If A is (i,j) pre-closed set subset of (X, τ_1, τ_2) , then A is (i,j) pgprw-closed.

Proof: Let A be a (i,j) pre closed subset of (X, τ_1, τ_2) .Let G ϵ rg α -open (X, τ_i) be s.t A \subseteq G. Since A is pre-closed we have τ_j -pcl(A) = A, which implies τ_j -pcl(A) \subseteq G. Therefore A is (i,j) pgprw-closed.

The converse of this theorem need not be true as seen from the following example.

3.4 Example: Let X={a,b,c}, τ_1 = {X, \emptyset , {a,b}} and τ_2 = { X, \emptyset , {a}, {b}, {a,c}}.

Then the subset {a,b} is (1,2) is pgprw-closed set but not (1,2) pre-closed set in the bitopological spaces (X,τ_1,τ_2) .

3.5 Theorem: If A is a (i,j)- pgprw-closed subset of (X, τ_1, τ_2) , then A is (i,j) gpr-closed.

Proof: Let A be a (i,j) pgprw-closed subset of (X, τ_1, τ_2) . Let G ϵ regular-open (X, τ_i) be

s.t A \subseteq G since RO(X, τ_i) \subseteq rg α -open (X, τ_i) We have G ϵ rg α -open (X, τ_i) then by hypothesis

 τ_j -pcl(A) \subseteq G, also τ_j -pcl(A) $\subseteq \tau_j$ -pcl(A) which implies τ_j -pcl(A) \subseteq G. Therefore A is (i,j) gpr-closed.

The converse of the theorem need not be true as seen from the following example.

3.6 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\tau_2 = \{X,\emptyset,\{a\}\}$.

Then $\{a,b\},\{a,c\}$ are (1,2) is gpr-closed set but not (1,2) pgprw-closed sets in the bitopological spaces.

3.7 Theorem: If A is τ_{j} - closed subset of a bitopological space (X, τ_1 , τ_2), then the set A is (i,j) Pgprw-closed.

Proof: Let, G ϵ rg α -open (X, τ_i) be s.t A \subseteq G then by hypothesis τ_i -pcl(A) = A. Which implies

 τ_i -pcl(A) \subseteq G therefore A is (i,j) pgprw-closed.

The converse of this theorem need not be true as seen from the followin example.

3.8 Example: Let $X=\{a,b,c\}, \tau_1=\{X,\emptyset,\{a\}\text{ and } \tau_2=\{X,\emptyset,\{a\},\{a,b\}\}.$

Then the subset {b}is(1,2) is pgprw-closed set but not τ_2 closed sets in the bitopological space (X, τ_1, τ_2) .

3.9 Remark: τ_{j} - w-closed set and (i,j) pgprw-closed set are independent as seen from the following examples.

3.10 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\tau_2 = \{X,\emptyset,\{a\},\{a,b\}\}$.

Then the subset $\{c\}$ is(1,2) is pgprw-closed set but not τ_2 wclosed sets in the bitopological space (X, τ_1, τ_2) .

3.11 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\tau_2 = \{X,\emptyset,\{a\},\{a,b\}\}$.

Then the subset {a,c}is(1,2) is τ_2 –w-closed set but not (1,2)pgprw-closed set in the bitopological space (X, τ_1 , τ_2).

3.12 Remark: τ_{j} - pgprw-closed set and (i,j) semi-closed set are independent as seen from the following examples.

3.13 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{a,b\}\}$ and $\tau_2 = \{X,\emptyset,\{a,b\}\}$.

Then the subset {b}is(1,2) τ_2 is pgprw-closed set but not (1,2) semi-closed set in the bitopological space (X, τ_1, τ_2) .

3.14 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\}\} \text{ and } \tau_2 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}.$

Then the subset {b} is semi-closed set but not τ_2 (1,2) pgprwclosed set in (X, τ_1 , τ_2).

3.15 Example:Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\}\} \text{ and } \tau_2 = \{X,\emptyset,\{a\},\{a,b\}\}.$

Then {a,c}is(1,2) gp-closed set but not (1,2) pgprw-closed set in the bitopological space (X, τ_1 , τ_2).

3.16 Remark: From the above discussion and known results we have the following implication

 $A \rightarrow B$ means A implies B but not convesely

 $A \rightarrow B$ means A and B are independent of each other

3.17 Theorem: If $A, B \in D_{pgprw}$ (i,j) then $A \cup B \in D_{pgprw}$ (i,j). **Proof:** Let $G \in rg\alpha$ -open (X, τ_i) be s.t $A \cup B \subseteq G$, then $A \subseteq G$ and $B \subseteq G$ since $A, B \in D_{pgprw}$ (i,j).

We have τ_j -pcl(A) \subseteq G and τ_j -pcl(B) \subseteq G that is τ_j -pcl(A) $\cup \tau_i$ -pcl(B) \subset G also

 τ_j -pcl(A) $\cup \tau_j$ -pcl(B) = τ_j -pcl(AUB) and so τ_j -pcl(AUB) \subseteq G Therefore AUB ϵ D_{pgprw} (i,j).

3.18 Remark: The intersection of two (i,j) pgprw-closed sets in generally a (i,j) pgprw-closed set as seen from the following example.

3.19 Example

LetX={a,b,c,d}, τ_1 ={X,Ø,{a},{b},{a,b},{a,b,c}} and τ_2 = { Y,Ø,{a},{c,d},{a,c,d}}.

Then the subsets $\{a,c,d\}$ and $\{c,d\}$ are (1,2) pgprw-closed sets then $\{a,c,d\} \cap \{c,d\} = \{c,d\}$

is a (1,2) pgprw-closed set in the bitopological space (X, τ_{1} , τ_{2}).

3.20 Remark : The family D_{pgprw} (1,2) is generally not equal to the family D_{pgprw} (2,1) as seen from the following example.

3.21 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ and $\tau_2 = \{Y,\emptyset,\{a,b\}\}$ then $D_{pgprw} (1,2) = \{X,\emptyset,\{c\},\{b,c\},\{a,c\}\}$ and $D_{pgprw} (2,1) = \{X,\emptyset,\{a\},\{b\},\{c\},\{a,c\}\}\}$ Therefore $D_{pgprw} (1,2) \neq D_{pgprw} (2,1)$.

3.22 Theorem : If $\tau_1 \subseteq \tau_2$ and $\operatorname{rga-open}(X, \tau_1) \subseteq \operatorname{rga-open}(X, \tau_2)$ in (X, τ_1, τ_2) then $D_{\operatorname{pgprw}}(\tau_2, \tau_1) \subseteq D_{\operatorname{pgprw}}(\tau_1, \tau_2)$.

Proof: Let $A \in D_{pgprw}$ (τ_{2}, τ_{1}) that is a (2,1)-pgprw-closed set. To prove that $A \in D_{pgprw}$ (τ_{1}, τ_{2}).

G ϵ rg α -open (X, τ_1) be s.t A \subseteq G since rg α -open (X, τ_1) \subseteq rg α -open(X, τ_2), we have

Gε rgα-open (X, τ_2)as A is a (2,1) pgprw-closed set, we have τ_1 -pcl(A) \subseteq G since $\tau_1 \subseteq \tau_2$ we have

 τ_2 -pcl(A) $\subseteq \tau_1$ -pcl(A) and it follows that τ_2 -pcl(A) \subseteq G. Hence A is (1,2) pgprw-closed that is

A ϵ D_{pgprw} (τ_1, τ_2) therefore D_{pgprw} (τ_2, τ_1) \subseteq D_{pgprw} (τ_1, τ_2).

3.23Theorem:Let i,j be fixed integers of $\{1,2\}$ for each x of (X,τ_1,τ_2) {x} is rga-open (X,τ_i) or $\{x\}^c$ is (i,j) pgprw-closed.

Proof: Suppose $\{x\}$ is not $rg\alpha$ -open (X, τ_i) then $\{x\}^c$ is not $rg\alpha$ -open (X, τ_i) . Now $rg\alpha$ -open (X, τ_i) .

Containing $\{x\}^c$ is X alone Also τ_j -pcl(A)($\{x\}^c$) \subseteq X. Hence $\{x\}^c$ is (i,j) pgprw-closed.

3.24 Theorem: If A is (i,j)pgprw-closed, then τ_j -pcl(A)-A contains no non-empty τ_i -rg α -open.

Proof: Let A be a (i,j)-pgprw-closed set. Suppose F is a nonempty τ_i rg α -open contained in

 τ_j -pcl(A) – A. Now F \subseteq X-A which implies A \subseteq F^c also F^c is a τ_i -rg α -open. Since A is a (i,j)-pgprw-closed set, we have τ_j -pcl(A) \subseteq F^c. Consequently F \subseteq τ_j -pcl(A) \cap (τ_j -pcl(A)^c = \emptyset which is a contradiction. Hence τ_j -pcl(A)-A contains no non-empty τ_i rg α -open.

The converse of this theorem does not holds as seen from the following example.

3.25Example :Let X={a,b,c,d}, τ_1 = {X, \emptyset , {a}, {c,d}, {a,c,d}} and

 $\tau_2 = \{ X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\} \}$ then the set A= {a,d} then τ_i -pcl(A)-A= {a,c,d}-{a,d}={c}

does not contain any non-empty τ_i -rg α -open set but A is not a (1,2)pgprw-closed set in the bitopological space (X, τ_1 , τ_2).

3.26Corollary: If A is (i,j) pgprw-closed in (X, τ_1, τ_2) , then A is τ_j -closed iff τ_j -pcl(A)-A is a τ_i -rg α -open set.

Proof: suppose A is τ_j -closed then τ_j -pcl(A) = A and so τ_j -pcl(A) – A = Ø which is a τ_i -rg α -open set. Conversely, suppose τ_j -pcl(A) – A is a τ_i rg α -open. Since A is (i,j) pgprw-closed by thm 3.24

 τ_j -pcl(A) – A does not contain any non-empty τ_i -rg α -open set. Therefore τ_j -pcl(A) – A = Ø. That is τ_j -pcl(A) = A and hence A is τ_j -closed.

3.27Theorem: In a bitopological space (X, τ_1, τ_2) , $rg\alpha$ -open set (X, τ_i) . $\subseteq \{F \subseteq X: F^c \in \tau_j\}$ iff every subset of (X, τ_1, τ_2) is a (i,j) pgprw-closed.

Proof: Suppose that $rg\alpha$ -open set $(X, \tau_i) \subseteq \{F \subseteq X: F^c \epsilon \tau_j\}$. Let A be any subset of x. Let $G\epsilon$ $rg\alpha$ -open (X, τ_i) . be s.t $A \subseteq G$. Then τ_j -pcl(G) = G. Also τ_j -pcl $(A) \subseteq \tau_j$ -pcl(A) = G.

That is τ_j -pcl(A) \subseteq G. Therefore A is a (i,j) pgprw-closed. Conversely, Suppose that every subset of (X, τ_{-1}, τ_2) is a (i,j)pgprw-closed set.

Let $G\epsilon$ rg α -open (X,τ_i) . Since $G \subseteq G$ and G is (i,j)pgprwclosed set, we have τ_i -pcl $(G) \subseteq G$.

Thus τ_j -pcl(G) \subseteq G and so G is τ_j -closed. That is $G \in \{F \subseteq X: F \subset \epsilon \tau_j\}$

hence $rg\alpha$ -open $(X, \tau_i) \subseteq F \subseteq X: F^c \epsilon \tau_j$.

3.28Theorem:Let A be a (i,j) pgprw-closed subset of a bitopological space (X, τ_1, τ_2) . If A is τ_i -rg α -open, then A is τ_i -closed.

Proof: Let A be $rg\alpha$ -open (X, τ_i) . Now, $A \subseteq A$. Then by hypothesis τ_j -pcl $(A) \subseteq A$. Therefore τ_j -pcl(A) = A. That is A is τ_j -closed.

3.29Theorem: If A is a (i,j) pgprw-closed set and $\tau_i \subseteq rg\alpha$ open (X, τ i) then τ_j -pcl{(x)} $\cap A \neq \emptyset$, For each $x \in \tau_j$ -pcl (A).

Proof: Let A be (i,j) pgprw-closed and $\tau_i \subseteq rg\alpha$ -open (X, τi) suppose τ_j -pcl{(x)} A = \emptyset ,

For some $x \in \tau_j$ -pcl (A) then A \subseteq $(\tau_i$ -pcl{(x)}^C. Now $(\tau_i$ -pcl{(x)}^C $\in \tau_i \subseteq$ rg α -open (X, τ_i).

By hypothesis that is $(\tau_i \text{-pcl}\{(x)\}^C \text{ is } \tau_i \text{ -rg}\alpha \text{-open}; \text{ since A is } (i,j) pgprw-closed,$

we have τ_j -pcl (A) $\subseteq (\tau_i$ -pcl{(x)}^C. This shows that $X \notin \tau_j$ -pcl (A) this contradicts the assumption.

3.30Theorem: If A is a (i,j) pgprw-closed set and $A \subseteq B \subseteq \tau_j$ -pcl (A), then B is (i,j) pgprw-closed.

Proof: Let G be a τ_i -rg α -open set s.t B \subseteq G as A is a (i,j)pgprw-closed set and A \subseteq G, we have

 τ_j -pcl (A) \subseteq G. Now B $\subseteq \tau_j$ -pcl (A) implies τ_j -pcl (B) $\subseteq \tau_j$ -pcl { τ_j -pcl (A)} = τ_j -pcl (A) \subseteq G.

Thus τ_j -pcl (B) \subseteq G. Therefore B is a (i,j) pgprw-closed set.

3.31Theorem : Let $A \subseteq Y \subseteq X$ and suppose that A is (i,j)pgprw-closed in (X, τ_1, τ_2) then A is (i,j)

Pgprw-closed in (X, τ_{1}, τ_{2}) then A is (i,j) pgprw-closed relative to Y provided Y is a τ_{i} -regular-open set.

Proof: Let $\tau_{i:Y}$ be the restriction of τ_i to Y. Let G be $\tau_{i:Y}$ rgaopen s.t A \subseteq G. Since A \subseteq Y \subseteq X

and Y is τ_i -regular-open set since w.k.t A \subseteq Y \subseteq X where X is a t.s and Y is an open subspace of X.

If $A\epsilon \operatorname{rga-open}(X)$ then $A\epsilon \operatorname{rga-open}(X)$ then G is $\tau_i \operatorname{-rga-open}(X)$ copen. Since A is (i,j) pgprw-closed τ_j -pcl (A) \subseteq G.That is $Y \cap \tau_j$ -pcl (A) $\subseteq Y \cap G = G$. Also $Y \cap \tau_j$ -pcl (A) = τ_{j-y} -pcl (A).

Thus $\tau_{j,y}$ -pcl (A) \subseteq G.Hence A is (i,j) pgprw-closed relatively to Y.

3.32Theorem: In a bitopological space (X, τ_1, τ_2) if rgaopen (X, τ_i) .) = $\{X, \emptyset\}$, then every subset of (X, τ_1, τ_2) is (i,j) pgprw-closed.

Proof: Let $rg\alpha$ -open (X,τ_i) .) = $\{X,\emptyset\}$, in a bitopological space (X,τ_1,τ_2) .Let A be any subset of X. To prove that A is an (i,j)-pgprw-closed. Suppose A= \emptyset then A is (i,j)-pgprw-closed.

Suppose $A \neq \emptyset$, then X is the only $\tau_i \operatorname{rga-open}$ and τ_j -pcl (A) \subseteq X. Hence A is a (i,j) pgprw-closed set.

The converse of the above theorem need not be true in general as seen from the following example.

3.33Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,c\}\}$ and $\tau_2 = \{Y,\emptyset,\{a,b\}\}$ then every subset of X is a (1,2) is a pgprw-closed set but rg\alpha-open $(X, \tau i) = \{X,\emptyset,\{a\},\{b\},\{c\}\}.$

3.34Example: If A is τ_i -open and (i,j) g-closed Then A is (i,j)pgprw-closed.

Proof: Let G be a τ_i - rg α -open set s.t A \subseteq G, now A \subseteq A,A is τ_i -open and (i,j)-g-closed.

We have τ_j -pcl (A) \subseteq A. that is τ_j -pcl (A) \subseteq G. Therefore A is (i,j) pgprw-closed.

3.35Theorem: suppose that $B \subseteq A \subseteq X$. B is a (i,j) pgprwclosed set relative to A and that A is both τ_i -clopen and τ_j closed. Then B is (i,j)-pgprw closed set in (X, τ_1, τ_2) .

Proof:Let τ_{i-A} be the restriction of τ_i to A. Let B G and G be τ_i -rg α -open but it is given that B A G X. Therefore B G and B A, which implies B A G. Now we show that A G G is τ_{i-A} rg α -open since A is τ_i -open and G is τ_i is semi-open, A G is τ_i is semi-open. Since A is τ_i - closed and G is τ_i -semi closed. A G is τ_i is semi-closed. Thus A G is τ_i is semi-open and τ_i is semi-closed and hence A G is τ_i rg α -open set. Since A G A G X. Since w.k.t A Y Y X, where X is a topological space and Y is an open subspace of X. If Aerg α (X), then A ϵ rg α (X)implies A \cap G is τ_i -rg α -open set. Since B is a (i,j) pgprw-closed relative to A

 τ_{j-A} -pcl(B) $\subseteq A \cap G$(i) But τ_{j-A} -pcl(B) = A $\cap \tau_j$ -pcl(B)(ii) from (i) and (ii), it follows that A $\cap \tau_j$ -pcl(B) $\subseteq A \cap G$. Consequently A $\cap \tau_j$ -pcl(B) $\subseteq G$. Since A is τ_j - closed. τ_j -pcl(A) = A and

 τ_j -pcl(B) $\subseteq \tau_j$ -pcl(A); we have A $\cap \tau_j$ -pcl(B) = τ_j -pcl(B). Thus τ_j -pcl(B) \subseteq G and hence B is (i,j)pgprw-closed Set in (X, τ_1, τ_2) .

3.36 Definition: Let $i, j \in \{1,2\}$ be fixed integers, in a bitopological space (X, τ_1, τ_2) , a subset $A \subseteq X$,

is said to be (τ_i, τ_i) pgprw-open if A^c is (i, j) pgprw-closed.

3.37Theorem : In a bitopological spaces (X, τ_1, τ_2) we have the following

- (i) Every (i,j) pre-open set is (i,j) pgprw-open but not conversely.
- (ii) Every τ_i -open set is (i,j) pgprw-open but not conversely.
- (iii) Every τ_j –pgprw open set is (i,j) gpr-open but not conversely.

Proof: The proof follows from the theorems 3.3, 3.5, & 3.7.

3.38 Theorem : If A and B are (i,j) pgprw-open sets, then A \cap B is (i,j) pgprw-open.

Proof: The proof follows from the theorem 3.17

3.39 Remark : The union of two (i,j) pgprw-open sets is generally an (i,j) pgprw-open set as seen from the following example.

3.40 Example

Let X={a,b,c,d}, τ_1 ={X,Ø,{a},{b,{a,b},{a,b,c}} and τ_2 = { Y,Ø,{a},{c,d},{a,c,d}}, then the subsets {b} and {a,b}

are {1,2} pgprw-open sets and

 $\{b\} \cup \{a,b\} = \{a,b\}$ is a (1,2) pgprw-open set in the bitopological space (X, τ_1, τ_2) .

3.41 Theorem: A subset A of (X, τ_1, τ_2) is (i, j) pgprw-open iff $F \subseteq \tau_j$ -p-int(A), whenever F is τ_i - rg α -open set and $F \subseteq A$.

Proof: Suppose that $F \subseteq \tau_j$ -p-int(A),whenever $F \subseteq A$ and F is τ_i -rg α -open set and to prove that A is (i,j) pgprw-open.Let G be τ_i -rg α -open and $A^c \subseteq G$. Then $G^c \subseteq A$ and G^c is τ_i -rg α -open.

if A is $rg\alpha$ -open in(X, τ) then X-A is also $rg\alpha$ -open, then $G^c \subseteq \tau_i$ -p-int(A) that is

 $(\tau_j$ -p-int(A))^c \subseteq G, since τ_j -pcl (A^c) = $[\tau_j$ -p-int(A)]^C thus A^c is (i,j) pgprw-closed that is A is (i,j) pgprw-open.

Convesely, Suppose that A is (i,j)-pgprw-open, $F \subseteq A$ and F is τ_i - rg α -open. Then $A^c \subset F^c$

And F^c is also τ_i - rg α -open. if A is rg α -open in (X, τ), then X-A is also rg α -open.

Since A^c is (i,j)-pgprw-closed, we have $(\tau_j$ -p-cl $(A^c) \subseteq F^c$ and so $F \subseteq \tau_j$ -p-int(A),since

 $(\tau_j - p - cl(A^c) = (\tau_j - p - int(A))^c$.

3.42 Theorem :Let A and G be two subsets of a bitopological spaces(X, τ_1, τ_2).

If the set A is (i,j) pgprw-open, then G=X, whenever G is τ_i -rg α -open and (τ_i -p-int(A) \cup A^c \subseteq G.

Proof: Let A be (i,j) pgprw-open, G be the τ_i - rg α -open and $(\tau_i$ -p-int(A)) \cup A^c \subseteq G. Then

 $G^{C} \subseteq (\tau_{j}$ -p-int(A) \cup A^c)^c = $(\tau_{j}$ -p-int(A)^C - A^C. Since A^C is (i,j)pgprw-closed and G^c is τ_{i} - rg α -open. .w.k.t if A is (i,j) pgprw-closed, then τ_{j} -pcl (A)- A contains no non-empty τ_{i} - rg α -open set. It followes that $G^{C} = \emptyset$, therefore G=X.

The converse of the theorem need not be true as seen from the following example.

3.43 Example : Let $X=Y=\{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\emptyset,\{a\},\{b,c\}\}$

If A= {a,b} then the only τ_1 rg α -open set containing τ_2 – pint(A) \cup A^c is X. But A is not (1,2) Pgprw-open set in (X, τ_1 , τ_2).

3.44 Theorem: If a subset A of (X, τ_1, τ_2) is (i,j) pgprwclosed, then τ_j -pcl (A) - A is (i,j) pgprw-open.

Proof: Let A be a (i,j) pgprw-closed subset in (X, τ_1, τ_2) . Let F be a τ_1 rg α -open set such that

 $F \subseteq \tau_j$ -pcl (A)-A. Since w.k.t If A is (i,j) pgprw-closed then τ_i -pcl (A)- A contains non-empty

 $\tau_1 \operatorname{rg}\alpha$ -open set then τ_j -pcl (A)- A is (i,j) pgprw-open then F = \emptyset .

Therefore $F \subseteq \tau_j$ -p-int(τ_j -p-cl(A)-A) and by theorem 3.41; τ_j -pcl (A)- A is (i,j) pgprw-open.

The converse of the above theorem need not be true as seen from the following example.

3.45 Example

Let $X=Y=\{a,b,c,d\}, \tau_1=\{X,\emptyset,\{a\},\{c,d\},\{a,c,d\}\}$ and $\tau_2 = \{Y,\emptyset,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ for the subset $A = \{a,b,d\}$ in X. τ_2 -pcl (A)- A = X - $\{a,b,d\}=\{c\}$

is (1,2) pgprw-open but $A = \{a,b,d\}$ is not (1,2) pgprwclosed.

3.46 Theorem: If τ_j -p-int(A) \subseteq B \subseteq A and A is (i,j) pgprwopen in (X, τ_1, τ_2) then B is (i,j) pgprwopen.

Proof: Let F be τ_1 rg α -open s.t F \subseteq B. Now F \subseteq B \subseteq A that is F \subseteq A. Since F is (i,j) pgprw-open by theorem 3.41 F \subseteq τ_j -p-int(A) by hypothesis τ_j -p-int(A) \subseteq B.

Therefore τ_j -int(τ_j -p-int(A) $\subseteq \tau_j$ -p-int(B). That is τ_j -p-int(A) $\subseteq \tau_j$ -p-int(B) and

hence $F \subseteq \tau_j$ -p-int(A) again by thm 3.41;B is a (i,j) pgprwopen set in (X, τ_1, τ_2).

3.47Corollary : Let A and B be subsets of a space (X, τ_1, τ_2) if B is (i,j) pgprw-open and τ_1 , p, int(P) $\subset A$, then $A \cap P$ is (i,j) pgpry open

 τ_j -p-int(B) \subseteq A; then A \cap B is (i,j)-pgprw-open.

Proof: Let B be (i,j)pgprw-open and τ_j -p-int(B) \subseteq A that is τ_j -p-int(B) \subseteq A then τ_j -p-int(B) \subseteq A \cap B.

Also τ_j -p-int(B) $\subseteq A \cap B \subseteq B$ and B is (i,j) pgprw-open by thm 3.46 then $A \cap B$ is (i,j)-pgprw-open.

3.48 Theorem:Every singleton point set in a space (X, τ_{1}, τ_{2}) is either (i,j) pgprw-open.

Proof: Let (X, τ_{1}, τ_{2}) be a bitopological space. Let $x \in X$ to prove $\{x\}$ is either (i, j) pgprw-open

That is to prove X-{x} is either (i,j) pgprw-closed which follow from the statement i.e, i,j be fixed integers of (1,2) for each x of (X, τ_1, τ_2), {x} is a rg α -open in (X, τ).

4.0 (τ_i , τ_j) pgprw-closure in bitopological spaces

4.1 Definition: Let (X, τ_{1}, τ_{2}) be a bitopological space and i, $j \in \{1,2\}$ be fixed integers. For each subset E of X, define (τ_{i}, τ_{j}) -pgprw cl(E) = $\cap \{A: E \in D_{pgprw} (i, j)$ -pgprw-cl(E)).

4.2 Theorem: If A and B be subsets of (X, τ_1, τ_2) then (i) (i,j) pgprw-cl(X)=X and (i,j)-pgprw-cl(\emptyset). (ii) A \subseteq (i,j)-pgprw-cl(A) (iii) if B is any (i,j) pgprw-closed set containing A Then (i,j)-pgprw-cl(A) \subseteq B.

Proof: Follows from the definiton 4.1

4.3 Theorem : Let A and B be subsets of (X, τ_{1}, τ_{2}) and i, $j \in \{1,2\}$ be fixed integers. If A B, then (i,j)-pgprw-cl(A) \subseteq (i,j) pgprw-cl(A).

Proof: Let $A \subseteq B$, by definition 4.1 (i,j)pgprw-cl(B) = \cap {{F:B \subseteq F \in D_{pgprw}(i,j)}.

If $B \subseteq F \in D_{pgprw}$, (i,j)since $A \subseteq B$, $A \subseteq B \subseteq F \in D_{pgprw}$ (i,j), we have (i,j) pgprw-cl(A) $\subseteq F$.

Therefore (i,j)-pgprw-cl(A) $\subseteq \cap \{F:B\subseteq F \in D_{pgprw} (i,j)\}=(i,j)-pgprw-cl(B).$

That is (i,j)-pgprw-cl(A) $\subseteq (i,j)$ pgprw-cl(B).

4.4 Theorem: Let A be a subset of (X, τ_{1}, τ_{2}) . If $\tau_{1} \subseteq \tau_{2}$ and rga-open $(X, \tau_{1}) \subseteq$ rga-open (X, τ_{2}) , then (1,2) pgprw-cl(A) \subseteq (2,1) pgprw-cl(A).

Proof: By definition 4.1 (1,2)pgprw-cl(A) = \cap {{F:A $\subseteq F \in D_{pgprw}$ (1,2).Since $\tau_1 \subseteq \tau_2$. Since w.k.t, if $\tau_1 \subseteq \tau_2$ and rga-open (X, τ_1) \subseteq rga-open (X, τ_2) in (X, τ_1, τ_2) then D_{pgprw} (τ_2, τ_1) $\subseteq D_{pgprw}$ (τ_1, τ_2) this implies D_{pgprw} (2,1) $\subseteq D_{pgprw}$ (1,2) Therefore

 $\begin{array}{l} & \cap \{ \{F:A \subseteq F \in D_{pgprw} \ (1,2) \subseteq \cap \{ \{F:A \subseteq F \in D_{pgprw} \ (2,1); \text{ that is } (1,2)pgprw-cl(A) \subseteq \cap \{ \{F:A \subseteq F \in D_{pgprw} \ (2,1)= \ (2,1)-pgprw-cl(A), \text{hence } (1,2)pgprw-cl(A) \subseteq pgprw-cl(A). \end{array}$

4.5 Theorem: Let A be a subset of (X, τ_{1}, τ_{2}) and $i, j \in \{1, 2\}$ be fixed integers, then $A \subseteq (i, j)$ ppprw-cl(A) $\subseteq \tau_{i}$ -p-cl(A).

Proof: By definition 4.1, it follows that $A \subseteq (i,j)$ pgprw-cl(A). Now to prove that

(i,j)-pgprw-cl(A) $\subseteq \tau_j$ -p-cl(A) by definition of closure, τ_j -p-cl(A) = {F \subseteq X:A \subseteq F and F is τ_j -closed}

If A \subseteq F and F is τ_j -closed set then F is (i,j)-pgprw-closed,as every τ_j -closed set is (i,j)pgprw-closed.

Therefore (i,j)-pgprw-cl(A) $\subseteq \cap \{F \subseteq X: A \subseteq F \text{ and } F \text{ is } \tau_j \text{-} \text{closed}\} \tau_j \text{-} \text{p-cl}(A) \text{ hence } (i,j) \text{-} pgprw-cl(A) \subseteq \tau_j \text{-} \text{p-cl}(A).$

4.6 Remark: Containment relation in the above theorem may be proper as seen from the followin example.

4.7 Example : Let $X=\{a,b,c,d\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\},\{a,b,c\}\}, \tau_2 = \{X,\emptyset,\{a,b\},\{c,d\}\}$ then τ_2 -closed sets are $\{X,\emptyset,\{a,b\},\{c,d\}$ and (1,2) pgprw-closed sets are

 ${X,\emptyset,{c},{d},{a,d},{b,d},{c,d},{a,c,d},{b,c,d},{a,b,d}. Take A = {b,c} then \tau_2 - cl(A) = X.$

And (1,2) pgprw-cl(A) = {b,c,d}. Now A \subseteq (1,2) pgprw-cl(A),but A \neq (1,2) pgprw-cl(A)

Also (1,2) pgprw-cl(A) $\subseteq \tau_2 - cl(A)$ but (i,j) pgprw-cl(A) $\neq \tau_j - cl(A)$.

4.8 Theorem : Let A be a subset of (X, τ_{1}, τ_{2}) and i, $j \in \{1,2\}$ be fixed integers. If A is (i,j)pgprw-closed then (i,j)-pgprw-cl(A)=A.

Proof: Let A be a (i,j) pgprw-closed subset of (X, τ_{1}, τ_{2}) w.k.t A \subseteq (i,j)-pgprw-cl(A) also A \subseteq A and A is (i,j) pgprw-closed by theorem 4.2(iii) (i,j) pgprw-cl(A) \subseteq A. Hence (i,j) pgprw-cl(A)=A.

4.9 Remark: The converse of the above theorem 4.8 need not be true as seen from the following example

4.10 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}, \tau_2 = \{X,\emptyset,\{a\},\{b,c\}\}$ then (1,2) Pgprw-closed sets $\{b,c\}$ Take $A = \{a\}$ Now (1,2)pgprw-cl(A) $= X \cap \{a,c\} \cap \{a\} = \{a\}$ But $\{a\}$ is not a (1,2) pgprw-closed set.

4.11 Theorem: The operator (i,j)-pgprw-closure in definition 4.1 (i) is the kurutowski closure opeator on X.

Proof:

- (i) Let (i,j) pgprw-cl $(\emptyset)=\emptyset$ by theorem 4.2(i)
- (ii) E⊆ (i,j)pgprw-cl(E) for any subset E of X by theorem 4.2(ii)
- (iii) Suppose E and F are two subsets of (X, τ_{1}, τ_{2}) it follows from theorem 4.3 that

(i,j) pgprw-cl(E) \subseteq (i,j)-pgprw-cl(EUF) and that (i,j) pgprw-cl(F) \subseteq (i,j)-pgprw-cl(EUF);hence

We have (i,j)-pgprw-cl(E) \cup (i,j) pgprw-cl(F) \subseteq (i,j) pgprw-cl(E \cup F).

Now if $x \notin (i,j)$ -pgprw-cl(E) $\cup (i,j)$ -pgprw-cl(F) then $x \notin (i,j)$ -pgprw-cl(F),it follows that there exist A,B ϵ D_{pgprw} (i,j) s.t E \subseteq A. $x \notin$ A and F \subseteq B, $x \notin$ B. Hence E \cup F \subseteq A \cup B, $x \notin$ A \cup B. Since A \cup B is (i,j)Pgprw-closed since w.k.t if A,B ϵ D_{pgprw} (i,j),then A \cup B ϵ D_{pgprw} (i,j) so $x \notin (i,j)$ -pgprw-cl(E \cup F). Then we have (i,j)pgprw-cl(E \cup F) \subseteq (i,j) pgprw-cl(E) \cup (i,j) pgprw-cl(F).

From the above discussions we have (i,j) pgprw-cl(EUF)=(i,j)-pgprw-cl(E) U (i,j)-pgprw-cl(F).

(iv) Let E be any subset of (X, τ_{1}, τ_{2}) by the definition of (i,j)-pgprw-closure,

(i,j)-pgprw-cl(E)= $\cap \{A \subseteq X: E \subseteq A \in D_{pgprw} (i,j)\}$.If $E \subseteq A \in D_{pgprw} (i,j)\}$ then (i,j) pgprw-cl(E) $\subseteq A$.Since A is a (i,j)-pgprw-closed set containing (i,j)pgprw-cl(E) by theorem 4.2(iii)

Conversely, (i,j) pgprw-cl(E) \subseteq (i,j) pgprw-cl(i,j)-pgprw-cl(E) is true by theorem 4.2(iii), then we have (i,j) pgprw-cl(E)= (i,j)-pgprw-cl(E).Hence (i,j)-pgprw-closure is a kuraowski closure operator on X.

From the this theorem (i,j)pgprw-closure defines the new topology on X.

4.12 Definition: Let $i,j \in \{1,2\}$ be two fixed integers. Let τ_{pgprw} -(i,j) be topology on X generated by (i,j) pgprw-closure in the usual manner .That is τ_{pgprw} -(i,j) = { E \subseteq X: (i,j)-pgprw-cl(E^c)= E^C.

4.13 Theorem: Let (X, τ_{1}, τ_{2}) be a bitopological space and $\{i,j\} \in \{1,2\}$ be two fixed integers, then $\tau_{j} \subseteq \tau_{\text{pgprw}(i,j)}$.

Proof:Let $G \in \tau_j$, It follows that G^c is τ_j -closed by theorem 3.7 G^c is (i,j) pgprw-closed. Therefore (i,j)-pgprw-cl(G^c)= G^c by theorem 4.8 that is $G \in \tau_{pgprw(i,j)}$ and hence $\tau_j \subseteq \tau_{pgprw(i,j)}$.

4.14 Remark: Containment relation in the above theorem 4.13 may be proper as seen from the following example.

4.15 Example: Let $X = \{a,b,c\}, \tau_1 = \{X,\emptyset,\{a\},\{b\},\{a,b\}\} \tau_2 = \{X,\emptyset,\{a\}\}$ then (1,2) pgprw-closed sets are $\{X,\emptyset,\{c\},\{b,c\}\}$ and τ_{pgprw} (1,2) = $\{X,\emptyset,\{a\},\{a,b\}\}$.clearly $\tau_2 \subseteq \tau_{pgprw}$ (1,2) but $\tau_2 \neq \tau_{pgprw}$ (1,2).

4.16 Theorem:Let (X, τ_{1}, τ_{2}) be a bitopological space and i,j ϵ {1,2} be two fixed integers. If a subset E of x is (i,j) pgprw-closed then E is τ_{pgprw} closed.

Proof: Let a subset E of X be (i,j) pgprw-closed by theorem 4.8 (i,j) pgprw-cl(E)=E that is (i,j)-pgprw-cl{ $\{E^{C}\}^{C}\}$ = {E^c}^c .It follows that E^c $\epsilon \tau_{pgprw}$ (1,2). Therefore E is τ_{pgprw} (i,j)-closed.

4.17 Theorem : For any point x of $(X, \tau_1, \tau_2), \{x\}$ is $\tau_i - rg\alpha$ open or τ_{pgprw} (i,j)-open.

Proof: Let x be any point of (X, τ_1, τ_2) , since w.k.t i,j be fixed integers of $\{1,2\}$ for each x of

 $(X, \tau_1, \tau_2), \{x\}$ is a – rg α open in (X, τ_i) or $\{x\}^c$ is τ_{pgprw} (i,j)closed then $\{x\}$ is $\tau_i - rg\alpha$ open

that is $\{x\}^c$ is τ_{pgprw} (i,j)-closed, by above thm 4.16 Therefore $\{x\}$ is $\tau_i - rg\alpha$ open

or τ_{pgprw} (i,j)-open.

4.18 Thorem: If $\tau_1 \subseteq \tau_2$ and $\operatorname{rg} \alpha$ open $(X, \tau_1) \subseteq \operatorname{rg} \alpha$ open (X, τ_2) in (X, τ_1, τ_2) then $\tau_{\operatorname{pgprw}}(2,1) \subseteq \tau_{\operatorname{pgprw}}(1,2)$.

Proof: let $G \epsilon \tau_{pgprw}$ (2,1), then (2,1)-pgprw-cl(G^c)=G^c to prove that $G \tau_{pgprw}$ (1,2),that is to prove

(1,2)pgprw-cl(G^c)=G^c. Now (1,2)-pgprw-cl(G^c)= ∩ {F⊆X: G^c⊆F ∈ D_{pgprw} (1,2). Since $\tau_1 \subseteq \tau_2$

and $rg\alpha$ open(X, τ_1) \subseteq $rg\alpha$ open(X, τ_2) by thm 3.22 D_{pgprw} (2,1) $\subseteq D_{pgprw}$ (1,2).

Thus \cap {F \subseteq X: G^C \subseteq F ϵ D_{pgprw} (1,2) \subseteq \cap {F \subseteq X: G^C \subseteq F ϵ D_{pgprw} (2,1).that is (1,2) pgprw-cl(G^C) \subseteq (2,1)

Pgprw-cl(G^c) and so,(1,2) pgprw-cl(G^C)=G^c.Conversely, G^c \subseteq (1,2)pgprw-cl(G^c) is true by the theorem 4.2(ii) then we have (1,2) pgprw-cl(G^c)=G^c that is G $\epsilon \tau_{pgprw}$ (1,2) and hence τ_{pgprw} (2,1) $\subseteq \tau_{pgprw}$ (1,2).

References

- Kelly JC. Bitopological spaces, proc, london math. soc 1913; (13):71-81.
- 2. Arya SP. Nour TM.separation axioms for bitopological spaces, Indian J pure appl math. 1998, (19):42-50.
- 3. Di Maio G, Noiri T. remarks on two weak forms of connectedness in bitopological spaces, bull. inst. math acad sinica 1998;16:135-147.
- 4. Fukutate T. On g-closed sets in bitopological spaces, bull fukuoka, univ. ed 1986; 35(3):19-28.
- 5. Nagaveni N. studies on generalization of homeomorphism in t.s, ph.d thesis, bharathiar university, coimbatore, 1999.

- 6. Maki H, sudaram P, Balachandran K. on generalized continuous maps and pasting lemma in bitopological spaces, Bull fukoka univ, Ed, 1991; (111)4023-21.
- sheik john M. A study on generalization of closed sets on continuous maps in topological and bitopological spaces ph.d thesis;Bharathiar university, coimbatore, 2002.
- Sampath Kumar S. β-open sets, β-continuous and βopen mappings in bitopological spaces, journal of the indian math. soc, 1996; 62:187-195.
- 9. Patty CW. Bitopological spaces, Duke Math j 1967; 34:387-392.
- Arockiarani I. studies on generalization of g-closed sets and maps in topological spaces, ph.d thesis, Bharathiar university, coimbatore, 1997.
- 11. Gnanambal Y. Studies on generalized pre-regular closed sets & generalization of locally closed sets; ph.d thesis bharathiar university, coimbatore, 1998.
- 12. Reily IL. on Bitopological separation properties, nenta math 1972; 29:14-23.
- 13. Rajamani M, Viswanathan K. on α -g semi closed sets in bitopological spaces, Bulletin of pure and applied sciences 2005; 24(1):39-53.
- 14. Popa V. on certain properties of bitopological semiseparate spaces,mat. Vensik 1979, 3:71-75.
- 15. Alias B. khalif; on gp-closed sets gp-continuous functions and T_{gp} spaces in Bitopological spaces, int conference on applicable general Topoogy Aug Hacettpe University Ankara, Turkey, 2001, 12-18.
- 16. Bose S. semi-open sets, semi-continuity and semi-open mappings in bitopological spaces, bull. cal. sci. kochi uni. ser. A. math, 1966, 17:33-42.
- Ker A, Bharrachayya P. bitopological pre-open sets, precontinuity and pre-open mapings, indian journal of mathematics. 1992; 34:295-309.
- 18. Sreeja D, Juane P. Sinthya. On rgα-closed sets in Bitopological spaces Malaya J Mat S. 2015; (1):27-41.
- Stone M. Application of the theory of Boolean rings to general topology, Trans. Amer. Math Soc. 1937; 41:374-481.
- Vadivel A, vairamamanickam K, rgα-Closed sets& rgαopen sets in Topological Spaces, Int J of math, Analysis. 2009; 3(37):1803-1819.
- 21. Wali RS, Vivekananda Dembre. on pre generalized pre regular weakly interior and pre generalized pre regular weakly closure in topological spaces.