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ABSTRACT 
In this paper, the notation of pgprw-interior and pgprw-closure are introduced and studied in topological spaces. It is 
proved that the complment of pgprw-interior of A is the closure of the complement of A and some properties of the new 
concepts have been studied. 
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1. INTRODUCTION 
 
N.Levine[1] introduced the concept of generalized sets of a topological space in 1970. Dunham[2] defined generalized 
closure operator in 1982.Mashhour, Abd El-Monsef and Deeb[3] introduced the concept of pre-closed sets in 1982. 
Gnanambal[4] introduced and studied the concept of gpr closed sets in topological space. Gnanambal and 
Balachandran[5], introduced and studied the concept of gpr- interior and gpr-closure operator in topological space in 
1999. Recently in the year 2015  Wali and Vivekananda Dembre [6] introduced and studied Pre generalized pre regular 
weakly closed sets (briefly-pgprw)and Pre generalized pre regular weakly open [7] sets in topological spaces. 
 
2. PRELİMİNARİES 
 
A subset A of a topological space (X, 𝜏𝜏) is called 

(i) Generalized closed set(briefly g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 
(ii) Pre-open set  if A ⊆ int(cl(A)) and  pre-closed set if cl(int(A)) ⊆ A.  
(iii) Generalized pre regular closed set(briefly gpr-closed) if pcl(A)⊆U whenever A⊆U and U is regular open in X. 
(iv) A subset A of  topological space (X,τ)  is called a pre generalized pre regular ωeakly closed set(briefly pgprω-

closed set) if pCl(A) ⊆ U whenever A ⊆ U and U is rgα open in (X,τ). 
(v) A subset A in (X,𝜏𝜏) is called Pre generalized pre regular weakly open set in X if Ac is Pre generalized pre 

regular weakly closed set in X. 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no 
separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), Ac, P-Cl(A) and     
P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre closure of A and pre-interior of A in X 
respectively. 
 
3. PGPRW-CLOSURE AND PGPRW- INTERIOR IN TOPOLOGICAL SPACES 
 
In this section the notation of pgprw-closure and pgprw-Interior is defined and some of its basic properties are studied.  
 
Definition 3.1: For a subset A of (X, 𝜏𝜏), pgprw-closure of A is denoted by pgprw-cl(A) and defined as                   
pgprw-cl(A)= ∩{G: A ⊆ G, G is pgprw–closed in (X,𝜏𝜏)} or ∩{G:A ⊆ G, G𝜖𝜖 pgprw-C(X)} 
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Theorem 3.2: If A and B are subsets of space (X, 𝜏𝜏) then  

(i) pgprw-cl (X) = X, pgprw-cl(ϕ) = ϕ 
(ii) A ⊆ pgprw-cl(A). 
(iii) If  B is any pgprw-closed set containing  A, then pgprw-cl(A) ⊆ B. 
(iv) If A⊆B then pgprw-cl(A) ⊆ pgprw-cl(B)  
(v) pgprw-cl(A) = pgprw-cl(pgprw-cl(A))  
(vi) pgprw-cl(A∪B) = Pgprw-cl(A)∪pgprw-cl(B). 

 
Proof:  

(i) By definition of pgprw-closure, X is only pgprw-closed set containing X. Therefore pgprw-cl(X) = 
Intersection  of all the pgprw-closed set containing X=∩{X} =  X  therefore  pgprw-cl (X) = Xand again  by 
definition of pgprw-closure. Pgprw-cl(ϕ) = Intersection of all pgprw-closed sets containing ϕ = ϕ∩any pgprw-
closed set containing ϕ = ϕ. Therefore  pgprw-cl(ϕ)=ϕ.   

(ii) By definition  of pgprw-closure of A, it is obvious that A ⊆ pgprw-cl(A). 
(iii) Let B be any pgprw-closed set containing A. Since  pgprw-cl(A) is the  intersection of all pgprw-closed set 

containing A, pgprw-cl(A) is contained in every pgprw-closed set containing A. Hence in particular  pgprw-
cl(A)⊆B 

(iv) Let A and B be subsets of (X,𝜏𝜏) such that A⊆B by definition of  pgprw-closure,  
Pgprw-cl(B)=∩{F:B ⊆F ϵ pgprw-C(X)}.If  B ⊆F ϵ pgprw-C(X), then pgprw-cl(B) ⊆ F. since A ⊆B, A⊆B ⊆ 
Fϵpgprw-C(X), we have pgprw-cl(A)⊆F, pgprw-cl(A)⊆∩{F : B ⊆F ϵ pgprw-C(X)} =  pgprw-cl(B). 
Therefore  pgprw-cl(A) ⊆ pgprw-cl(B). 

(v) Let A be any subset of X by definition of pgprw-closure , pgprw-cl(A) = ∩{F : A ⊆F 𝜖𝜖 pgprw-C(X)}. If A ⊆F 
ϵ pgprw-C(X) then pgprw-cl(A) ⊆ F, since F is pgprw-closed set containing pgprw-cl(A) by (iii) 
pgprw-cl(pgprw-cl(A))⊆F;Hence pgprw-cl(pgprw-cl(A))=∩{F:A⊆F𝜖𝜖pgprw-C(X)}=pgprw-cl(A).Therefore; 
pgprw-cl(pgprw-cl(A))=pgprw-cl(A). 

(vi) Let A and B be subsets of X, Clearly A⊆A∪B, B⊆A∪B from (iv) pgprw-cl(A)⊆ pgprw-cl(A∪B),pgprw-
cl(B)⊆pgprw-cl(A∪B);hence, pgprw-cl(A)∪ pgprw-cl(B)⊆ pgprw-cl(A∪B)……..(1) Now we have to prove 
that pgprw-cl(A∪B) ⊆ pgprw-cl(A)∪ pgprw-cl(B).Suppose x∉pgprw-cl(A)∪ pgprw-cl(B) then ∃pgprw-closed 
set A1 and B1 with A⊆A1 ,  B⊆B1 and x∉A1∪B1.We have A∪B⊆A1∪B1 and A1∪B1 is the  pgprw-closed set(we 
know that union of two pgprw closed subsets of X is pgprw closed set in X ) such that x∉A1∪B1.Thus 
x∉pgprw-cl(A∪B). 

(vii) Hence pgprw-cl(A∪B)⊆pgprw-cl(A)∪ pgprw-cl(B)------(2). From (1) and (2) we have pgprw-cl(A∪B)= 
pgprw-cl(A)∪pgprw-cl(B). 

 
Theorem 3.3: If A ⊆X is  pgprw-closed set then pgprw-cl(A) =A 
 
Proof: Let A be pgprw-closed subset of  X. we know that A ⊆ pgprw-cl(A) –(1)Also A⊆A and A is pgprw-closed set 
by theorem3.2 (iii) pgprw-cl(A)⊆A –(2)Hence pgprw-cl(A) =A. 
 
The Converse of the above need not be true as seen from the following example. 
 
Example 3.4: Let  X={a,b,c,d}, 𝜏𝜏={X,ϕ,{a},{c,d},{a,c,d}}.A={a,c}  pgprw-cl(A)={a,c}=A then A is not pgprw-closed 
set. 
 
Theorem 3.5: If Aand B  are subsets of space X then pgprw-cl(A∩B)⊆pgprw-cl(A)∩pgprw-cl(B). 
 
Proof: Let A and B be subsets of X, Clearly A∩B ⊆ A, A∩B ⊆ B  by  theorem 3.2(iv) Pgprw-cl(A∩B)⊆pgprw-cl(A), 
Pgprw-cl(A∩B)⊆pgprw-cl(B); hence pgprw-cl(A∩B) ⊆ pgprw-cl(A)∩pgprw-cl(B). 
 
Remark 3.6: In-general; pgprw-cl(A)∩pgprw-cl(B)⊈pgprw-cl(A∩B) as seen from the following example. 
 
Example 3.7: Consider X={a, b, c, d}, 𝜏𝜏={X, ϕ,{a},{b},{a, b},{a, b, c}}, A={b, c}, B={c, d}, A∩B={c}, pgprw-cl(A) 
= {b, c, d}, pgprw-cl(B) ={c, d}, pgprw-cl(A∩B)={c} and pgprw-cl(A)∩pgprw-cl(B)={c,d} therefore pgprw-
cl(A)∩pgprw-cl(B) ⊈pgprw-cl(A∩B). 
 
Theorem 3.8: For an x 𝜖𝜖X, x𝜖𝜖 pgprw-cl(A) if and if A∩V ≠ ϕ for every pgprw-open set V containing x. 
 
Proof: Let x𝜖𝜖 pgprw-cl(A).  To prove  A∩V ≠ ϕ for every pgprw-open set V containing x by contradiction. 
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Suppose ∃pgprw-open set V containing x s.t A∩V = ϕ. Then A ⊆ X-V, X-V is pgprw-closed set, pgprw-cl(A) ⊆ X-V. 
This shows that x∉pgprw-cl(A) which is contradiction. Hence A∩V ≠ ϕ for every pgprw -open set V containing x. 
Conversely: Let A∩V ≠ ϕ for every pgprw-open set V containing x. To prove x𝜖𝜖 pgprw-cl(A). we prove the result by 
contradiction. Suppose x∉pgprw-cl(A) then there exist a pgprw-closed subset Fcontaining A  s.t x  ∉ F. Then x𝜖𝜖X-F is 
pgprw-open.Also (X-F)∩A=ϕ which is contradiction. Hence  x𝜖𝜖 pgprwcl(A). 
 

Theorem 3.9: If Ais subset of space X then  
(i) Pgprw-cl(A) ⊆ cl(A). 
(ii) Pgprw-cl(A) ⊆ pcl(A). 
 

Proof:  
(i) Let A be subset of  space X by definition of Closure Cl(A) = ⊆∩{F: A ⊆F ϵ C(X)}.If A⊆ F ϵ C(X) then      

A⊆F ϵ pgprw-C(X) because every closed set is pgprw-closed that is pgprw-cl(A)⊆F therefore pgprw-cl(A) 
⊆∩{F: A⊆F 𝜖𝜖 C(X)} = cl(A). Hence pgprw-cl(A) ⊆ cl(A). 

(ii) Let A be subset of  space X by definition of  p-closure pcl(A)= ⊆∩{F: A ⊆F ϵ p-C(X)}.If A⊆ F ϵ p-C(X) then 
A⊆F ϵ pgprw-C(X) because every p-closed set is pgprw-closed that is pgprw-cl(A) ⊆ F therefore            
pgprw-cl(A) ⊆∩{F: A⊆F 𝜖𝜖 p-C(X)} = pcl(A). Hence pgprw-cl(A) ⊆ p-cl(A) 

 
Remark 3.10: Containment relation in the above theorem3.9 may be proper as seen from following example. 
 
Example 3.11: Let X={a, b, c, d}, 𝜏𝜏={X, ϕ,{a},{b},{a, b}, {a, b, c}}, A={a} cl(A)={a,c,d} pgprw-cl(A)={a,d},   
pcl(A) = {a, c, d} It follows that pgprw-cl(A)⊂cl(A) and pgprw-cl(A) ⊂ pcl(A) 
 
Theorem 3.12: If A is subset of space X then gpr-cl(A) ⊆ pgprw-cl(A) where gpr-cl(A) = ∩{F: A ⊆ F ϵ GPR-C(X)} 
 
Proof: Let A be a subset of X by definition of pgprw-closure, pgprw-cl(A) = ∩{F: A ⊆ F ϵ pgprw-C(X)} If                     
A ⊆ F ϵ pgprw-C(X) then A ⊆ F ϵ GPR-C(X), because every pgprw-closed is gpr-closed   i.e  gpr-cl(A) ⊆ F therefore 
gpr-cl(A) ⊆ ∩{F : A ⊆ F ϵ pgprw-C(X)}= pgprw-cl(A).  Hence gpr-cl(A) ⊆ pgprw-cl(A). 
 
Theorem 3.13: Pgprw-closure is a Kuratowski closure operator on a space X. 
 
Proof: Let A and B be the subsets space X. 

(i) pgprw-cl(X) = X, pgprw-cl(ϕ) = ϕ    
(ii) A ⊆ pgprw-cl(A)   
(iii) pgprw-cl(A) = pgprw-cl (pgprw-cl(A))  
(iv) pgprw-cl(A∪B) = Pgprw-cl(A)∪pgprw-cl(B) by theorem 3.2 

Hence pgprw-closure is a Kuratowski closure operator on a space X. 
 
Definition 3.14: For a subset A of  (X, 𝜏𝜏), pgprw-interior of A is  denoted by pgprw-int(A) and defined as pgprw-
int(A)= ∪{G: G ⊆ A and G is pgprw-open in X} or ∪{G: G ⊆ A and G ϵpgprw-O(X)} 
i.e  pgprw-int(A) is the union of all pgprw-open set contained in A. 
 
Theorem 3.15: Let A and B be subset of space X then 

(i) pgprw-int(X) = X, pgprw-int(ϕ)=ϕ 
(ii) pgprw-int(A) ⊆ A 
(iii) If  B is any pgprw-open set contained in A, then B⊆ pgprw-int(A) 
(iv) IfA⊆B then pgprw-int(A)⊆pgprw-int(B)  
(v) pgprw-int(A)= pgprw-int(pgprw-int(A))  
(vi) pgprw-int(A∩B)=pgprw-int(A)∩ pgprw-int(B) 

 
Proof : (i) and (ii) by definition of pgprw-interior of A, it is obvious.  
 
(iii) Let B be any pgprw-open set s.t  B ⊆ A.  Let x ϵB , B is an pgprw-open set contained in A, x is an pgprw-interior 
of A  i.e. x ϵpgprw-int(A). Hence B ⊆ pgprw-int(A) &(iv), (v), (vi) similar proof as theorem 3.2  and  definition of 
pgprw-interior. 
 
Theorem 3.16: If a subset A of  X is pgprw-open then pgprw-int(A) = A 
 
Proof: Let A be pgprw-open subset of X. We know that  pgprw-int(A) ⊆ A  –(1)  Also A is pgprw-open set contained 
in Afrom Theorem 3.15 (iii) A ⊆ pgprw-int(A)  --(2). Hence From(1) and (2) pgprw-int(A) = A 
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Theorem 3.17: If A and B are subsets of space X then  pgprw-int(A)∪ pgprw-int(B)⊆ pgprw-int(A∪B) 
 
Proof:  We know that A ⊆ A∪B and  B ⊆ A∪B, We have Theorem 3.15(iv) pgprw-int(A) ⊆ pgprw-int(A∪B) and 
pgprw-int(B )⊆ pgprw-int(A∪B). This implies that  pgprw-int(A)∪ pgprw-int(B)⊆ A∪B 
 
Remark 3.18: The converse of the above theorem need not be true as seen from the following example. 
 
Example 3.19: Let X={a, b, c, d} and 𝜏𝜏={X, ϕ, {a},{b},{a, b}, {a, b, c}}, A={b, c}, B ={a, d}, A∪B={a, b, c, d}, 
pgprw-int(A)={b, c}, pgprw-int(B)={a}, pgprw-int(A∪B)=X, pgprw-int(A) ∪ pgprw-int(B) = {a, b, c}; therefore 
pgprw-int(A∪ B) ⊈ pgprw-int(A)∪ pgprw-int(B). 
 
Theorem 3.20: If A is a subset of X then (i)  int(A) ⊆ pgprw-int(A)(ii) p-int(A) ⊆ pgprw-int(A). 
 
Proof: 

(i) Let A be a subset of a space X. Let x ϵint(A) => x ϵ ∪{G: G is open, G ⊆ A}=>∃ an open set  G s.t. x ϵ G ⊆ A 
=>∃ an pgprw-open set G s.t. x ϵ G ⊆ A, as every open set is an pgprw-open set in X=> x ϵ ∪{G : G is pgprw-
open set in X}=> x ϵ pgprw-int(A). Thus x ϵ int(A) => x ϵ pgprw-int(A). Hence int(A)⊆ pgprw-int(A). 

(ii) Let A be a subset of a space X. Let x ϵ p − int(A) => x ϵ ∪{G : G is p-open, G ⊆ A}=>∃ an p-open set           
G s.t. x ϵ G ⊆ A =>∃ an pgprw-open set G s.t. x ϵ G ⊆ A, as every p-open set is an pgprw-open set in          
X=> x ϵ ∪{G: G is pgprw-open set in X}=> x ϵ pgprw-int(A). Thus x ϵ p-int(A) x ϵ pgprw-int(A). Hence       
p-int(A)⊆ pgprw-int(A). 

 
Remark 3.21: Containment relation in the above theorem may be proper as seen from the followingexample 
 
Example 3.22 Let X={a, b, c, d} 𝜏𝜏={X, ϕ, {a},{b},{a, b}, {a, b, c}}; A={b, c}, Int(A)={b}, p-int(A) = {b}, 
Pgprw-int(A)={b,c}thereforeint(A)⊆pgprw-int(A) and p-int(A)⊆pgprw-int(A) 
 
Theorem 3.23: If A issubset of X, then pgprw-int(A)⊆ gpr-int(A), where gpr-int(A) is given by  
gpr-int(A) = ∪{G ⊆ X: G is gpr-open, G ⊆ A} 
 
Proof: Let A be a subset of a space X. Let x ϵpgprw −int(A) => x ϵ ∪{G: G is pgprw-open , G ⊆ A}=>∃ an pgprw-
open set G s.t. x ϵ G ⊆ A, as every pgprw-open set is an gpr-open set in X=> x ϵ ∪{G: G is gpr-open, G ⊆ A}=> xϵ 
gpr-int(A). Thus xϵ pgprw-int(A) => xϵ gpr-int(A) Hence pgprw-int(A) ⊆ gpr-int(A). 
 
Theorem 3.24: For any subset A of X  

(i) X – pgprw-int(A) = pgprw-cl(X – A)   
(ii) pgprw-int(A) = X –  pgprw-cl(X – A)   
(iii) pgprw-cl(A) = X – pgprw-int(X – A) 
(iv) X – pgprw-cl(A) =  pgprw-int(X – A) 

 
Proof: 

(i) x𝜖𝜖X-pgprw-int(A) then x is not in pgprw-int(A) i.e. every pgprw-open set G containing  x  s.t. G ⊈ A. This 
implies every pgprw open set G containing x intersects (X – A) i.e. G (X A)∩ − ≠ φ . Then by theorem 3.8 
x𝜖𝜖 pgprw-cl(X-A) thereforeX-pgprw-int(A) ⊆ pgprw-cl (X-A)–(1) and Let, x ∈pgprw-cl(X-A), then every 
x∈pgprw open set, G containing x intersects X – A i.e. G (X A)∩ − ≠ φ , i.e. every pgprw-open G containing 
x s.t. G A⊆ . Then by definition 3.14, x is not in pgprw-int(A), i.e. x𝜖𝜖X-pgprw-int(A) and so – pgprw-cl     
(X-A) ⊆ X- pgprw-int(A)- (2). Thus X – pgprw-int(A) = pgprw-cl(X – A).  

(ii) Follows by taking complements in (i). 

(iii) Follows by replacing A by X-A in (i) 

(iv) Follows by taking complements in (iii). 
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