Vol.4.Issue.1.2016 (January-March)

http://www.bomsr.com Email:editorbomsr@gmail.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ON PRE GENERALIZED PRE REGULAR WEAKLY CONTINUOUS MAPS IN TOPOLOGICAL SPACES

R.S. WALI¹ AND VIVEKANANDA DEMBRE ²

¹Department of Mathematics, Bhandari and Rathi College Guledagudd, Karnataka, India. ²Department of Mathematics, Rani Channamma University, Belagavi, Karnataka, India.

ABSTRACT

In this paper, a new class of maps called Pgprw-Continuous maps are introduced and investigated. A map f: $X \rightarrow Y$ is called pgprw-continuous maps if the inverse image of every closed set in Y is pgprw closed set in X and some of their properties are studied.

Key words: Pgprw closed sets, Pgprw open sets, Pgprw- continuous maps.

R.S.WALI AMS Mathematical Subject classification(2010):54A05,54C05,54C08. ©KY PUBLICATIONS

1.INTRODUCTION

The Concept of semi-continuous maps was introduced and studied by Levine [1], Mishra et.al [2], Benchalli and Wali [3], Abd El-Monsef, El-deeb and Mahmoud [4], Jayalakshmi and Janaki [5], Vadivel and Vairamanickam [6], Joshi,Gupta,Bharadwaj Kumar andKumar [7], Bhattacharya [8], Janaki and Renu Thomas [9], Shlya Isac Mary and Thangvely [10], Mashhour, Abd El-Monsef, El-deeb & El-deeb [11], Maki,Umehara and Noiri [12], Navalagi, Chandrashakarappa and Gurushatanavar [13],Gnanambal [14], Bhattacharya and Lahiri [15], Arya and Gupta [16] introduced and studied rgwcontinuous maps, rw-continuous maps, β -continuous maps,wgr α -continuous,r α -continuous maps,gprw-continuous maps, gspr-continuous maps, gpr-continuous maps, sg-continuous maps, completely continuous maps respectively. In this paper, a new class of maps called pgprw continuous maps are introduced and invetigated.

2.PRELIMINARIES

Throughout this paper space (X, τ),(Y, σ) &(Z, μ)(or simply X,Y&Z) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1:[6] A subset A of topological space (X, τ) is called a rg α -closed set if α -Cl(A) \subseteq U, Whenever A \subseteq U and U is regular α - open in X.

Definition 2.2:[17]A subset A of topological space (X, τ) is called a pre generalized pre regularweakly closed set(briefly pgprw-closed set) if pCl(A) \subseteq U whenever A \subseteq U and U is rg α -open in (X, τ) .

Theorem 2.3:[17] If a subset A of (X, τ) is pre-closed set ,then it is pre generalized pre regular weakly closed set but not conversely.

Theorem 2.4:[17] If a subset A of (X, τ) is Closed , then it is pgprw-closed but not conversely.

Theorem 2.5:[17] If a subset A of (X, τ) is pgprw closed set , then it is gpr-closed set but not conversely.

Theorem 2.6:[17] If a subset A of (X, τ) is pgprw closed set ,then it is gspr-closed set but not conversely

Theorem 2.7:[17] If a subset A of (X, τ) is pgprw cosed set, then it is gp closed set but not conversely.

Theorem 2.8:[18] If a subset A of (X, τ) is called pre generalized pre regular weakly open set if A^cis a pgprw closed.

Theorem 2.9:[19] Let A be a subset of (X, τ) Then pgprw-cl(A) of A is defined to be the intersection of all pgprw-closed sets containing A and is denoted by pgprw-cl(A).

Definition 2.10:[20] A subset A of topological space (X, τ) is called Regular openset if A = int(clA)) and a regular closed set if A = cl(int(A)).

Definition 2.11: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i)Compeletely continuous map[16] if f⁻¹(V) is a regular closed set of (X, τ) for every closed set V of (Y, σ) .

(ii)semi-continuousmap[1]if f⁻¹(V)is a semi-closed set of (X, τ)for every closed set V of (Y, σ).

(iii)Rgw-continuous map[2] if f⁻¹(V) is a rgw-closed set of (X, τ) for every closed set V of (Y, σ).

(iv)Rw-continuousmap[3] if f⁻¹(V) is a rw-closed set of (X, τ) for every closed set V of (Y, σ).

(v) β -continuous map[4] if f⁻¹(V) is a β -closed set of (X, τ) for every closed set V of (Y, σ).

(vi)wgr α - continuousmap[5] if f⁻¹(V) is a wgr α -closed set of(X, τ) for every closed set V of (Y, σ).

(vii)Rg α -continuous map[6]if f⁻¹(V)is aRg α -closed set of(X, τ)for every closed set V of (Y, σ).

(viii)gprw continuous map[7] if $f^{-1}(V)$ is a gprw-closed set of (X, τ) for every closed set V of (Y, σ).

(ix)gr continuousmap[8] if $f^{-1}(V)$ is a gr closed set of (X, τ) for every closed set V of (Y, σ).

(x)R* continuous map[9] if f⁻¹(V) is a R*-closed set of (X, τ) for every closed set V of (Y, σ).

(xi)Rpscontinuousmap[10] if $f^{-1}(V)$ is a rps-closed set of (X, τ) for every closed set V of (Y, σ).

(xii)p- continuous map[11] if $f^{-1}(V)$ is a p- closed set of (X, τ) for every closed set V of (Y, σ).

(xiii)gp- continuousmap[12] if $f^{-1}(V)$ is a gp closed set of (X, τ) for every closed set V of (Y, σ).

(xiv)gspr-continuous map[13] if f⁻¹(V) is a gspr closed set of (X, τ) for every closed set V of (Y, σ).

(xv)qpr-continuous map[14]if f⁻¹(V)is a qpr-closed set of (X, τ)for every closed set V of (Y, σ).

(xvi)sq-continuous map[15] if f⁻¹(V) is a sg closed set of (X, τ) for every closed set V of (Y, σ).

3. PGPRW-CONTINOUS MAPS AND THEIR BASIC PROPERTIES

Definition 3.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be pgprw continuous maps(briefly pgprwcontinuous) if the inverse image of every closed set in Y is pgprw closed set in X.

Theorem 3.2: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is continuous map then it is pgprw-continuous map, but not conversely.

Proof: It is cleary by theorem [2.4].

Example.3.3:Let, X=Y={a,b,c,d}, τ ={X, Ø,{a},{b},{a,b},{a,b,c}}and

 $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let a map f: $X \rightarrow Y$ defined by f(a)=c, f(b)=a, f(c)=b, f(d)=d, then f is pgprw continuous map, but not continuous map, as closed set f={c,d} in Y, then

 $f^{-1}(F) = \{a, d\}$ in X which is not closed set in X.

Theorem.3.4: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is p-continuous map, then it is pgprw-continuous map, but not conversely.

Proof: Follow from the fact that every p-closed set is pgprw closed set[Theorem 2.3].

Example 3.5:Let, $X=Y=\{a,b,c,d\}, \tau=\{X, \emptyset, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ and

 $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}. \text{ Let a map f: } X \rightarrow Y \text{ defined by } f(a)=c, f(b)=a, f(c)=b, f(d)=d, f(c)=b, f(c)=b, f(d)=d, f(c)=b, f(c)$

Then f is pgprw-continuous map, but not p-continuous map as closed set $F = \{c,d\}$ in Y then $f^{-1}(F)=\{a,d\}$ in X which is not p-closed set in X.

Theorem.3.6: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is pgprw-continuous map, then f is gpr-continuous map,but not conversely.

Proof: Follow from the fact that every pgprw-closed set is gpr closed set[Theorem 2.5].

Example 3.7: Let, X=Y={a,b,c}, τ={X, Ø,{a},{b,c}}and

 $\sigma = \{Y, \emptyset, \{a\}\}$. Let a map f: $X \rightarrow Y$ defined by f(a)=b, f(b)=a, f(c)=c.

Then f is gpr-continuous map but not pgprw-continuous map as closed set F = {b,c} in Y then ;

 $f^{-1}(F)=\{a,c\}$ in X which is not pgprw-closed set in X.

Theorem.3.8: If a map $f: (X, \tau) \rightarrow (Y, \sigma)$ is pgprw-continuous map, then it is gspr-continuous, but not conversely.

Proof: Follow from the fact that every pgprw-closed set is gspr closed set[Theorem 2.6].

Example 3.9: Let, X=Y={a,b,c}, τ={X, Ø,{a},{b,c}}and

 $\sigma = \{Y, \emptyset, \{a\}\}$. Let a map f: $X \rightarrow Y$ defined by f(a)=b,f(b)=a,f(c)=c.

Then f is gspr-continuous map but not pgprw-continuous map as closed set $F = \{b,c\}$ in Y then,

 $f^{-1}(F)=\{a,c\}$ in X which is not pgprw-closed set in X.

Theorem.3.10: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is pgprw-continuous map, then it is gp-continuous map,but not conversely.

Proof: Follow from the fact that every pgprw-closed set is gp closed set[Theorem 2.7].

Example 3.11: Let, $X=Y=\{a,b,c\}, \tau=\{X, \emptyset, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}\}$. Let a map f: $X \rightarrow Y$ defined by f(a)=b, f(b)=a, f(c)=c.

Then f is gp-continuous map but not pgprw-continuous map as closed set $F = \{b,c\}$ in Y, then $f^{-1}(F)=\{a,c\}$ in X which is not pgprw-closed set in X.

Theorem.3.12:Let f: $X \rightarrow Y$ be a map, then the following statements are equivalent

(i)f is pgprw-continuous map

(ii)The inverse image of each open set in Y is pgprw-open in X.

Proof: Assume that $f: X \rightarrow Y$ is pgprw-continuous map,Let G be open in Y, ThenG^c is closed in Y. Since f is pgprw-continuous map, $f^{-1}(G^c)$ is pgprw closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is pgprw-open in X.

Conversely, assume that inverse image of each open set in Y is pgprw-open in X.Let F be any closed set in Y, by assumption $f^{-1}(F^{\circ})$ is pgprw-open in X. But $f^{-1}(F^{\circ}) = X - f^{-1}(F)$.Thus X- $f^{-1}(F)$ is pgprw-open in X and so $f^{-1}(F)$ is pgprw closed in X. Therefore f is pgprw-continuous map; hence (i) & (ii) are equivalent.

Theorem.3.13: If a map $f:X \rightarrow Y$ is completely continuous map, then it is pgprw-continuous map.

Proof: Suppose that a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is completely continuous map; Let F be closed set in Y then f⁻¹(F) is regular closed in X and f⁻¹(F) is pgprw closed in X. Thus f is pgprw-continuous map.

Remark: The following examples shows that pgprw-continuous maps are independent ofβcontinuousmap,rw-continuousmap,rgw-continuousmap,wgrα-continuous-map,rα continuousmap, gprw-continuousmap, gr-continuousmap, R*-continuousmap, rps-continuousmap, Semicontinuousmap. **Example 3.14:** Let, $X=Y=\{a,b,c\}, \tau=\{X, \emptyset, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}\}$. Let a map f: $X \rightarrow Y$ defined by f(a)=b,f(b)=a,f(c)=c. then f is β -continuousmap,rw-continuousmap,rgw-continuousmap,wgra-continuousmap,ra-continuousmap,gprw-continuousmap,gr-continuousmap,R*-continuousmap,rps-continuousmap,Semi-continuousmap but f is not pgprw-continuous as closed set F = $\{b,c\}$ in Y then f $^{-1}(F)=\{a,c\}$ in X which is not pgprw-closed set in X.

Example3.15:Let X={a,b,c,d}, Y={a,b,c}, $\tau=$ {X, Ø,{a},{b},{a,b,c}}and $\sigma =$ {Y, Ø,{a}}.Let a map f: X \rightarrow Y defined by f(a)=b,f(b)=a,f(c)=a,f(d)=c, Then f is pgprw-continuous mapbut f is not-rw-continuous-map,rgw-continuous-map,wgr α -continuous-map,

 $rg\alpha$ -continuous-map,gprw-continuousmap,R*continuousmaps,rps-continuousmap respectively as closed set F= {b,c} in Y, then f⁻¹(F)={a,d} in X which is not rw-closed,rgw-closed, wgr α -closed, rg α -closed,gprw-closed,R*-closed,rps closed set in X.

Example3.16:Let $X=Y=\{a,b,c,d\}$ and $\tau =\{X,\emptyset,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$

and $\sigma = \{Y, \emptyset, \{b,c\}, \{b,c,d\}, \{a,c,d\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=c, f(b)=b, f(c)=a, f(d)=d, then f is pgprw-continuousmap but f is not gr-continuousmap as closed set F= {a} in Y, then f⁻¹(F)={c}in X, which is not gr-closed set in X.

Example3.17: Let X={a,b,c,d},Y={a,b,c} and $\tau = \{X, \emptyset, \{a\}, \{a,b\}, \{a,b,c\}\} \sigma = \{Y, \emptyset, \{a\}\}$

Let map f: $X \rightarrow Y$ defined by f(a)=b,f(b)=b,f(c)=a,f(d)=c, then f is pgprw-continuous map but f is not Semi-continuous map, β -continuous map,sg-continuousmaps as closed set F={b,c} in Y then

 $f^{-1}(F)=\{a,b,d\}$ in X which is not semi-closed, β -closed, sg-closed set in X.

Remark 3.18: From the above discussion and known results we have the following implication

Theorem 3.19: The Composition of two pgprw-continuous maps need not be pgprw-continuous maps and this can be shown by following example.

Example 3.20: Let X=Y=Z={a,b,c} and τ ={X,Ø,{a},{b},{a,b},{a,b,c}}

and $\sigma = \{Y, \emptyset, \{a\}\}, \mu = \{Z, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and a maps f: $X \rightarrow Y$, g: $Y \rightarrow Z$ & gof: $X \rightarrow$ Zare identity maps both f & g are pgprw continuous maps but gof not pgprw-continuous map. Since closed set V={b} in Z, f⁻¹(V)={b}, which is not pgprw closed set in X.

Theorem 3.21: Let f: $X \rightarrow Y$ is pgprw continuousmap function and g: $Y \rightarrow Z$ is continuous map then gof: $X \rightarrow Z$ is pgprw-continuous map.

Proof: Let g be continuous map and V be any open set in Z then $g^{-1}(v)$ is open in y,Since f is

Pgprw-continuous map $f^{-1}(g^{-1}(v))=(gof)^{-1}(V)$ is pgprw-open; hence gof is pgprw-continuous map. **Theorem 3.22:**Let $f:X \to Y$ be a function from a topological space X in to t.s Y.

If $f: X \to Y$ is pgprw-continuous map then $f(pgprw-cl(A)) \subseteq cl(f(A))$, for every subset A of X.

Proof: Since $f(A) \subseteq Cl(f(A), implies that A \subseteq f^{-1}(cl(f(A)))$. Since Cl(f(A)) is a closed set in Y and

f is pgprw-continuous map then by definiton $f^{-1}(cl(f(A)))$ is a pgprw closed set in X containing A ; hence pgprw-cl(A) $\subseteq f^{-1}(cl(f(A)))$. Therefore f (pgprw-cl(A)) $\subseteq cl(f(A))$. The converse of the above theorem need not be true as seen from the following example

Example 3.23:Let X=Y= $\{a,b,c,d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c,d\}, \{a,c,d\}\}$

and $\sigma = \{Y, \emptyset, \{b,c\}, \{b,c,d\}, \{a,c,d\}\}$. Let map f: $X \rightarrow Y$ defined by f(a)=d, f(b)=b, f(c)=c, f(d)=d, for every subset of X, f(pgprw-cl(A)) \subseteq cl(f(A)), holds ;but f is not pgprw-continuous map. Since closed set V={d} in Y, f^{-1}(V)={a,d} which is not pgprw closed set in X.

Theorem 3.24: Let A be a subset of a topological space X. Then $x \in pgprw-cl(A)$ if and only if for any pgprw–open set U containing x, $A \cap U \neq \varphi$.

Proof: Let $x \in pgpr\omega$ -cl(A) and suppose that, there is a pgprw–open set U in X such that $x \in U$ and $A \cap U = \varphi$ implies that $A \subset U^c$ which is pgprw–closed in X implies pgprw-cl(A) \subseteq pgprw-cl(U^c) = U^c. Since $x \in U$ implies that $x \notin U^c$ implies that $x \notin pgprw$ -cl(A), this is a contradiction. Conversely, Suppose that, for any pgprw–open set U containing $x, A \cap U \neq \varphi$. To prove that $x \in pgprw$ -cl(A). Suppose that $x \notin pgprw$ -cl(A), then there is a pgprw–closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in F^c$ which is pgprw–open in X. Since $A \subseteq F$ implies that

 $A \cap F^c = \varphi$, this is a contradiction. Thus $x \in pgprw-cl(A)$.

Theorem 3.25 : Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

(i) For each point x in X and each open set V in Y with $f(x) \in V$, there is a pgprw-open set U in X such that $u \in U$ and $f(U) \in V$.

such that $x \in U$ and $f(U) \subseteq V$

(ii) For each subset A of X, $f(pgprw-cl(A)) \subseteq cl(f(A))$.

(iii) For each subset B of Y, pgprw-cl($f^{-1}(B)$) $\subseteq f^{-1}(cl(B))$.

(iv) For each subset B of Y, $f^{-1}(int(B)) \subseteq pgprw-int(f^{-1}(B))$.

Proof: (i) \rightarrow (ii) Suppose that (i) holds and let $y \in f(pgprw-cl(A))$ and let V be any open set of Y. Since $y \in f(pgprw-cl(A))$ implies that there exists $x \in pgprw-cl(A)$ such that f(x) = y.

Since $f(x) \in V$, then by (i) there exists a pgprw–open set U in X such that $x \in U$ and $f(U) \subseteq V$. Since $x \in f(pgprw-cl(A))$, then by theorem 3.24 $U \cap A \neq \phi$. $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$, then $V \cap f(A) \neq \phi$. Therefore we have $y = f(x) \in cl(f(A))$. Hence $f(pgprw-cl(A)) \subseteq cl(f(A))$.

(ii) \rightarrow (i) Let if (ii) holds and let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c)$ this implies that $x \notin A$. Since $f(pgprw-cl(A)) \subseteq cl(f(A)) \subseteq V^c$ this implies that

pgprw-cl(A) $\subseteq f^{-1}(V^c) = A$. Since $x \notin A$ implies that $x \notin pgprw$ -cl(A) and by theorem 3.24 there exists a pgprw–open set U containing x such that $U \cap A = \varphi$, then $U \subseteq A^c$ and

hence $f(U) \subseteq f(A^c) \subseteq V$.

(ii) \rightarrow (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by $f^{-1}(B)$

we get from (ii) $f(pgprw-cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$. Hence $pgprw-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

(iii) \rightarrow (ii) Suppose that (iii) holds, let B = f(A) where A is a subset of X. Then we get from (iii) , pgprw-cl(f⁻¹(f(A))) \subseteq f⁻¹(cl(f(A))) implies pgprw-cl(A) \subseteq f⁻¹(cl(f(A))).

Therefore $f(pgprw-cl(A)) \subseteq cl(f(A))$.

(iii) \rightarrow (iv) Suppose that (iii) holds. Let $B \subseteq Y$, then $Y-B \subseteq Y$. By (iii) ,

Pgprw-cl($f^{-1}(Y-B)$) ⊆ $f^{-1}(cl(Y-B))$ this implies X– pgprw-int($f^{-1}(B)$) ⊆ X– $f^{-1}(int(B))$.

Therefore $f^{-1}(int(B)) \subseteq pgprw-int(f^{-1}(B))$.

(iv) \rightarrow (iii) Suppose that (iv) holds Let $B \subseteq Y$, then $Y-B \subseteq Y$. By (iv),

 $f^{-1}(int(Y-B)) \subseteq pgprw-int(f^{-1}(Y-B))$ this implies that $X - f^{-1}(cl(B)) \subseteq X - pgprw-cl(f^{-1}(B))$. Therefore pgprw-cl($f^{-1}(B)$).

Conclusion : In this paper, a new class of maps called Pgprw-Continuous maps are introduced and investigated and we observed that the composition of two pgprw-continuous maps need not be pgprw-continuous maps.in future the same process will be analyzed for pgprw-properties. **References:**

- [1]. N .Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- [2]. Precious Jane Fiesta Lapura & Helen moso Rava ,Some forms of rgw-continuous function,int journal of math analysis,Vol.8,2014,no.30,1457-1463.
- [3]. R.S.Wali, on some topics in general and fuzzy topological spaces ph.d thesis K.U.Dharwad (2007).
- [4]. M. E. Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [5]. A. Jayalakshmi & C.Janaki, on ωgrα-continuous functions in Topological Spaces, int j of maths 3(6)2012;2386-2392.
- [6]. A.Vadivel & K.vairamamanickam,rgα-continuous Maps and Some of their Properties, Acta Ciencia Indica, (in press).
- [7]. V.Joshi,S.Gupta,N.Bhardwaj,R,kumar, on Generalised pre Regular weakly(gprω)-closed functions in Topological Spaces,pure mathematical science,vol.2 2013,no.1,13-21;Hikari Ltd.
- [8]. M.Yoshimura,T.Miwa & T.Noiri; a gr-closed functions and g-closed functions in topological spaces ;Dept of Mathematics,faculty of science, Shimane university,japan (1993).
- [9]. C.Janaki & Renu Thomas, on R*- Closed sets in Topological Spaces, Int J of Math Archive 3(8) 2012, 3067-3074.
- [10]. T. Shlya Isac Mary & P.Thangavelv, on rps-continuous and rps-irresolute functions,IJMA 2(1) (2011),159-162.
- [11]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12]. I.Arockiarani, k.Balachandran and J.dontchev,some characterization of gp-irresolute and gpcontinuous maps between topological spaces,mem.fac.kochi univ ser A math.,20(1999),93-104.
- [13]. Govindappa Navalagi, Chandrashakarappa A.S. & S.V.Gurushantanavar, Int.Jour of Mathematical sciences, Vol.2 no.1 jan 2012,pp-231-237,gspr functions in topological spaces.
- [14]. Y. Gnanambal and K.Balachandran,on gpr-continuous functions in topological spaces; indian J.pure appl math 30(6);581-593 june 1999.
- [15]. P.Sundaram,H.Maki, & K.Balachandran,sg- continuous maps and semi-T_{1/2} Spaces Bull.Fukoka.uni.ed part III,40(1991),33-40.
- [16]. S.P.Arya and R.Gupta, On strongly continuous maps, Kyungpook Math. J. 14:131:143, 1974.
- [17]. R.S.Wali And Vivekananda Dembre ;On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.
- [18]. R.S.Wali And Vivekananda Dembre; On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological Spaces, Annals of Pure and Applied MathematicsVol. 10, No.1, 2015; Published on 12 April 2015.
- [19]. R.S.Wali And Vivekananda Dembre; On pre generalized pre regular weakly interior and pre generalized pre regular weakly closure in topological spaces; international research journal of pure algebra Feb 2016(in press).
- [20]. M.Stone, Application of the theorey of Boolean rings to general topology, trans amer math soc 41,374-481(1937).