International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2016; 1(1): 17-21 © 2016 Stats & Maths www.mathsjournal.com Received: 03-03-2016 Accepted: 04-04-2016

R S Wali

Department of Mathematics, Bhandari and Rathi College Guledagudd-587203, Karnataka, India.

Vivekananda Dembre

Department of Mathematics, Rani Channamma University, Belagavi-591156, Karnataka, India.

On Pgprw-closed maps and pgprw-open maps in topological spaces

RS Wali, Vivekananda Dembre

Abstract

In this paper, we introduce pgprw-closed map from a topological space X to a topological space Y as the image of every closed set is pgprw-closed and also we prove that the composition of two pgprw-closed maps need not be pgprw-closed map. We also obtain some properties of pgprw-closed maps.

Keywords: Pgprw-closed maps, pgprw-open maps, pgprw-closed set, pgprw-open set.

1. Introduction

Generalized closed mappings were introduce and studied by Malghan ^[12]. Rg-closed maps by Arockiaran ^[13]. In this paper, a new class of maps called pre generalized pre regular weakly closed maps (briefly, pgprw-closed) maps have been introduced and studied their relations with various generalized closed maps. We prove that the composition of two pgprw -closed maps need not be pgprw-closed map. We also obtain some properties of pgprw-closed maps. Wali and Vivekananda Dembre ^[14] introduced new class of sets called pre generalized pre regular weakly - closed (briefly pgprw - closed) sets in topological spaces which lies between the class of all p - closed sets and the class of all gpr - closed sets

2. Preliminaries

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

2.1 Definition: A subset A of a topological space (X,τ) is called

- 1. Semi-open set [1] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$..
 - 2. Semi-pre open set $^{[2]}$ (= β -open[1] if A \subseteq cl(int(cl(A)))and a semi-pre closed set(= β -closed) if int(cl(int(A))) \subseteq A.
 - 3. Pre-open set $^{[3]}$ if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.
 - Generalized pre closed(briefly gp-closed)set ^[4] ifpcl(A)⊆U wheneverA⊆U and U is open in X.
 - 5. Generalized pre regular closed set(briefly gpr-closed) [5] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
 - 6. Generalized semi pre regular closed (briefly gspr-closed) set $^{[6]}$ if $spcl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in X.
 - 7. Pre-generalized-pre-regular closed(briefly pgpr-closed)set $^{[7]}$ if pcl(A) \subseteq U whenever A \subseteq U and U is rg- open in X.
 - 8. W-closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
 - 9. Regular generalized closed set(briefly rg-closed) [9] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
 - 10. Generalized closed set(briefly g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
 - 11. Pre generalized pre regular ω eakly closed set[14](briefly pgpr ω -closed set) if pCl(A) \subseteq U whenever A \subseteq U and U is rg α open in (X, τ).
 - 12. pre generalized pre-regular ωeakly open(briefly pgprω-open) [15] set in X if A^c is pgprω-closed in X.

Correspondence: R S Wali

Department of Mathematics, Bhandari and Rathi College Guledagudd-587203, Karnataka, India.

- **2.2 Definition:** A map $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called
- 1. [12] g-closed map if f (F) is g-closed in (Y, σ) for every closed set of (X, τ)
- 2. [8] w-closed map if f (F) is w-closed in (Y, σ) for every closed set of (X, τ) .
- 3. [13] rg-closed map if f (F) is rg-closed in(Y, σ) for every closed set of (X, τ).
- 4. [5] gpr-closed map if f (F) is gpr-closed in(Y, σ) for every closed set of(X, τ).
- 5. [23] gspr-closed map if f (F) is gspr-closed in (Y, σ) for every closed set of (X, τ) .
- 6. [19] β -closed map if f (F) is β -closed in (Y, σ) for every closed set of (X, τ).
- 7. [22] semi-closed map if f (F) is semi-closed in (Y, σ) for every closed set of (X, τ) .
- 8. [20] p-closed map if f (F) is p-closed in (Y, σ) for every closed set of (X, τ) .
- 9. [21] gp-closed map if f (F) is gp-closed in (Y, σ) for every closed set of (X, τ)
- 10. [17] Irresolute map if f⁻¹(V) is semi-closed in X for every semi-closed subset V of Y.
- 11. $^{[16]}$ pgprw-irresolute (pgprw-irresolute) map if $f^{-1}(V)$ is pgprw-Closed set in X for every pgprw-closed set V in Y.
- 12. pgprw continuos function [18] if $f^{-1}(V)$ is a pgprw-closed of (X,τ) for every closed set of (Y,σ) .
- **2.3 Definition:** $^{[10]}$ A topological space X is said to be $T_{1/2}$ space if every g-closed set is closed.
- **2.4 Theorem:** [14]
- 1. Every closed set is pgprw-closed set.
- 2. Every pre closed set is pgprw-closed set.
- 3. Every pgprw closed set is gp closed set.
- 4. Every pgprw closed set is gpr closed set.
- 5. Every pgprw closed set is gspr closed set.

3. On Pgprw-Closed Maps

- **3.1 Definition:** A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be Pre generalized pre regular weakly closed map (briefly pgprw-closed) if the image of every closed set (X, τ) is pgprw-closed in (Y, σ) .
- **3.2 Theorem:** Every closed map is pgprw-closed map but not conversely.

Proof: The proof follows from the definitions and fact that every closed set is pgprw-closed set from Theorem 2.4 [14].

- **3.3 Remark:** The converse of the above theorem need not be true as seen from the following example.
- **3.4 Example:** Consider $X=Y=\{a,b,c\}$ with topologies $\tau=\{X,\phi,\{a,c\}\}$ and $\sigma=\{Y,\phi,\{a\}\}$. Let $f:(X,\tau)\rightarrow (Y,\sigma)$ be the identity map. Then this function is pgprw-closed but not closed as the image of closed set $\{b\}$ in X is $\{b\}$ which is not closed set in Y.
- **3.5 Theorem:** Every p-closed map is pgprw-closed map but not conversely.

Proof: The proof follows from the definitions and fact that every p-closed set is pgprw-closed set from Theorem 2.4 [14].

- **3.6 Remark:** The converse of the above theorem need not be true as seen from the following example.
- **3.7 Example:** Consider $X=Y=\{a,b,c,d\}$ with topologies $\tau=\{X, \phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ and $\sigma=\{Y, \phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$. Let map $f:(X,\tau) \rightarrow Y, \sigma$ defined by f(a)=c,f(b)=c,f(c)=b,f(d)=d. Then f is pgprw closed map but not closed map and not p-closed map as the image of closed set $F=\{c,d\}$ in Y which is not p-closed set in Y.
- **3.8 Theorem:** If a map $f: (X, \tau) \rightarrow (Y, \sigma)$ is closed then the following holds. If f is pgprw closed map then f is gp, gpr, gspr closed map but not conversely.

Proof: The proof follows from the defintions and fact that every pgprw closed set is gp, gpr, gspr closed set from Theorem 2.4 [14].

- **3.9 Remark:** The converse of the above theorem need not be true as seen from the following example.
- **3.10 Example:** Consider $X=Y=\{a,b,c\}$ with topologies $\tau=\{X,\phi,\{a\},\{b,c\}\}$ and $\sigma=\{Y,\phi,\{a\}.$ Let map $f:X,\tau)$ (Y,σ) defined by f(a)=b, f(b)=a, f(c)=c. Then f is gp, gpr, gspr, closed map but not pgprw closed map as the image of closed set $F=\{b,c\}$ in X then $f(F)=\{a,c\}$ in Y which is not pgprw-closed set in Y.
- **3.11 Remark:** The following example show that the β -closed maps and pgprw closed maps are independent and similarly semi-closed maps and pgprw-closed maps.
- **3.12 Example:** Consider $X=Y=\{a,b,c\}$ with topologies $\tau=\{X,\phi,\{a\}\}$ and $\sigma=\{Y,\phi,\{a\}\}$. Let map $f:(X,\tau)(Y,\sigma)$ defined by f(a)=b,f(b)=a,f(c)=c.. Then f is paper closed map but f is not semi-closed map, β -closed map as closed set $F=\{b,c\}$ in X then $f(F)=\{a,c\}$ in Y which is not semi-closed, β -closed set in Y.

- **3.13 Example:** Consider $X = \{a, b, c\}, Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{a, b\}\}$. Let map $f: (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = d, f(b) = b, f(c) = c. Then f is semi-closed map, β -closed map, but f is not pgprw closed map as closed set $F = \{b, c\}$ in X then $f(F) = \{b, c\}$ in Y which is not pgprw-closed set in Y.
- **3.14 Theorem:** A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is pgprw-closed map if and only if for each subset S of (Y, σ) and each open set U containing $f^{-1}(S) \subseteq U$, there is a pgprw-open set of $(Y, \text{ such that } S \subseteq V \text{ and } f^{-1}(V) \subseteq U$.

Proof: Suppose f is pgprw-closed map. Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^{-1}(S) \subseteq U$. Now X-U is closed set in (X, τ) ,. Since f is pgprw-closed map, f (X-U) is pgprw closed set in (Y, σ) . Then V=Y-f(X-U) is a pgprw-open set in (Y, σ) . Note that $f^{-1}(S) \subseteq U$ implies $S \subseteq V$ and $f^{-1}(V) = X-f^{-1}(f(X-U)) \subseteq X-(X-U) = U$. That is $f^{-1}(V) \subseteq U$. For the converse, let F be a closed set of (X, τ) Then $f^{-1}(f(F)^c) \subseteq F^c$ and F^c is an open set in (X, τ) By hypothesis, there exists a pgprw-open set V in (Y, σ) such that $f(F)^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f(((f^{-1}(V))^c))$ which implies $f(V) \subseteq V^c$. Since V^c is pgprw-closed in (Y, σ) and therefore f is pgprw-closed map.

- **3.15 Remark:** The composition of two pgprw-closed maps need not be pgprw-closed map in general and this is shown by the following example.
- **3.16 Example:** Consider $X=Y=Z=\{a,b,c\}$ with topologies $\tau=\{X,\phi,\{a\},\{a,b\}\}$ and $\sigma=\{Y,\phi,\{a\}\}$,
- $\mu = \{ Z, \phi, \{a\}, \{c\}, \{a,c\}\} \}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f and g are pgprw-closed maps but their composition g of: $(X, \tau) \rightarrow (Z, \mu)$ is not pgprw-closed map because $F = \{c\}$ is closed in (X, τ) but g of $\{c\}$ which is not pgprw-closed in (Z, μ) .
- **3.17 Theorem:** If $f: (X, \tau) \longrightarrow (Y, \sigma)$ is closed map and $g: (Y, \sigma) \longrightarrow (Z, \mu)$ is pgprw-closed map, then the g of: $(X, \tau) \longrightarrow (Z, \mu)$ composition is pgprw-closed map.

Proof: Let F be any closed set in (X, τ) Since f is closed map, f (F) is closed set in (Y, σ) . Since g is pgprw-closed map, g (f (F)) is pgprw-closed set in (Z, μ) . That is g of (F) = g(f(F)) is pgprw-closed and hence g of is pgprw-closed map.

- **3.18 Remark:** If $f: (X, \tau) \rightarrow (Y, \sigma)$ is pgprw-closed map and $g: (Y, \sigma) \rightarrow (Z, \mu)$.) is closed map, then the composition need not be pgprw-closed map as seen from the following example.
- 3.19 Example: Consider $X=Y=Z=\{a,b,c\}$ with topologies $\tau=\{X,\phi,\{a\},\{a,b\}\}$ and $\sigma=\{Y,\phi,\{a\}\}\& \mu=\{Z,\phi,\{a\},\{c\},\{a,c\}\}\}$. Define $f:X,\tau) \rightarrow (Y,\sigma)$ and $g:(Y,\sigma) \rightarrow (Z,\mu)$ be the identity map. Then f is pgprw closed map and g is a closed map but their composition g of: $(X,\tau) \rightarrow (Z,\mu)$ is not pgprw-closed map since for the closed set $\{c\}$ in (X,τ) but g of $\{c\}$ which is not pgprw-closed in (Z,μ)
- **3.20 Theorem:** Let (X, τ) and (Z, μ) be topological spaces and (Y, σ) be topological spac where every pgprw-closed subset is closed. Then the composition g of: $(X, \tau) \longrightarrow (Z, \mu)$ of the pgprw-closed maps f: $(X, \tau) \longrightarrow (Y, \sigma)$ and g: $(Y, \sigma) \longrightarrow (Z, \mu)$ is pgprw-closed map.

Proof: Let A be a closed set of (X, τ) . Since f is pgprw-closed map, f (A) is pgprw-closed map in. Then by hypothesis f (A) is closed. Since g is pgprw-closed map, g (f(A)) is pgprw closed map in (Z, μ) and g (f(A)) = g of (A). Therefore g of is pgprw-closed map.

3.21 Theorem: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is g-closed map, g: $(Y, \sigma) \rightarrow (Z, \mu)$ be pgprw-closed map and (Y, σ) is $T_{1/2}$ – space then their composition is g of: $(X, \tau) \rightarrow (Z, \mu)$ is pgprw closed map.

Proof: Let A be a closed set of (X, τ) Since f is g-closed map, f (A) is g-closed in (Y, σ) . Since g is pgprw-closed map, g (f(A)) is pgprw-closed in (Z, μ) and g (f(A)) = g of (A). Therefore g of is pgprw-closed map.

4. pgprw-open maps

Definition 4.1: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a pgprw-open map if the image f(A) is pgprw-open in (Y, σ) for each open set A in (X, τ)

- **4.2 Theorem:** For any bijection map $f: (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent.
- 1. $f^{-1}: (Y, \sigma) \longrightarrow (X, \tau)$ is pgprw-continuous map.
- 2. f is pgprw-open map and
- 3. f is pgprw-closed map.

Proof

- (i) implies (ii) Let U be an open set of (X, τ) By assumption, $(f^{-1})^{-1}(U) = f(U)$ is pgprw-open in (Y, σ) and so f is pgprw-open map.
- (ii) implies (iii) Let F be a closed set of (X, τ) , Then F^c is open set in (X, τ) . By assumption $f(F^c)$ is pgprw-open in (Y, σ) . That is $f(F^c) = f(F)^c$ is pgprw-open in (Y, σ) and therefore f(F) is pgprw-closed in (Y, σ) . Hence F is pgprw-closed map.
- (iii) implies (i) Let F be a closed set of (X, τ) , By assumption, f(F) is pgprw-closed in (Y, σ) But $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is pgprw continuous map.
- **4.3 Theorem:** A map $f:(X, \tau) \longrightarrow (Y, \sigma)$ is pgprw-open if and only if for any subset S of (Y, σ) and any closed set of containing $f^{-1}(S)$, there exists a pgprw-closed set K of (Y, σ) containing S such that $f^{-1}(K) \subseteq F$.

Proof: Suppose f is pgprw-open map. Let $S \subseteq Y$ and F be a closed set of (X, τ) , such that $f^{-1}(S) \subseteq F$. Now X-F is an open set in (X, τ) . Since f is pgprw-open map, f (X-F) is pgprw-open set in (Y, σ) . Then K=Y-f (X-F) is a pgprw closed set in (Y, σ) . Note that $f^{-1}(S) \subseteq F$ implies $S \subseteq K$ and $f^{-1}(K) = X-f^{-1}(X-F) \subseteq X-(X-F) = F$. That is $f^{-1}(K) \subseteq F$. For the converse let U be an open set of (X, τ) , Then $f^{-1}((f(U))^c) \subseteq U^c$ and U^c is a closed set in (X, τ) . By hypothesis, there exists a pgprw-closed set K of (Y, σ) such that $(f(U))^c \subseteq K$ and $f^{-1}(K) \subseteq U^c$ and so U $(f^{-1}(K))^c$. Hence $K^c \subseteq f(U) \subseteq f((f^{-1}(K))^c)^c$ which implies $f(U) = K^c$. Since K^c is a pgprw-open, f(U) is pgprw open in (Y, σ) and therefore f is pgprw-open map.

4.4 Theorem: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \mu)$ be two mappings such that

Their composition g of: $(X, \tau) \rightarrow (Z, \mu)$ is composition be pgprw-closed mapping. Then the following statements are true.

- 1. If f is continuous map and surjective, then g is pgprw-closed map
- 2. If g is pgprw-irresolute map and injective, then f is pgprw-closed map.
- 3. If f is g-continuous map, surjective and (X, τ) is a $T_{1/2}$ space, then g is pgprw-closed map.

Proof

- 1. Let A be a closed set of (Y, σ) Since f is continuous map, $f^{-1}(A)$ is closed in g of $(f^{-1}(A))$ is pgprw-closed in (Z, μ) . That is g (A) is pgprw closed in (Z, μ) since f is surjective. Therefore g is pgprw closed map.
- 2. Let B be a closed set of (X, τ) . Since g of is pgprw-closed map, g of (B) is pgprw-closed map in (Z, μ) Since g is pgprw-irresolute map, g $^{-1}$ (g of (B)) is pgprw-closed set in (Y, σ) That is f (B) is pgprw-closed map in (Y, σ) since f is injective. Therefore f is pgprw-closed map.
- 3. Let C be a closed set of (Y, σ) Since f is g-continuous map, $f^{-1}(c)$ is g-closed set in (X, τ) . Since (X, τ) is a $T_{1/2}$ -space, $f^{-1}(c)$ is closed set in (X, τ) Since g of is pgprw-closed map (g of) ($f^{-1}(c)$) is pgprw-closed map in (Z, μ) , That is g(c) is pgprw-closed map in (Z, μ) since f is subjective. Therefore g is pgprw-closed map.
- **5. Conclusion:** In this paper, a new class of maps called pgprw-closed maps and pgprw-open maps in topological spaces are introduced and investigated and we observed that the composition of two pgprw-closed maps need not be pgprw-closed maps. In future the same process will be analyzed for pgprw-properties.

6. References

- 1. Levine N. Semi-open sets and semi-continuity in topological spaces. 1963; 70:36-41.
- 2. Andrijevic D. Semi-preopen sets, Mat. Vesnik. 1986; 38(1):24-32.
- 3. Mashhour AS, Abd El-Monsef ME. El-Deeb SN.On pre-continuous and weak Precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 1982; 53:47-53.
- 4. Maki H, Umehara J, Noiri T. Every Topological space is pre T_{1/2} mem Fac sci,Kochi univ, Math. 1996; 17:33-42.
- 5. Gnanambal Y. studies on generalized pre-regular closed sets and generalization of locally closed Sets, ph.d thesis bharathiar university, coimbatore. 1998.
- 6. Govindappa Navalagi, Chandrashakarappa A.S. & S.V.Gurushantanavar, Int. Jour of Mathematics and Computer Applications. 2010; 2(1-2):51-58.
- 7. Anitha M, Thangavely P. On pre generalized pre regular closed sets(pgpr) Acta ciencia Indian. 2005; 31M(4):1035-1040.
- 8. sheik john M, A study on generalization of closed sets on continuous maps in topological & bitopological spaces, ph.d thesis, bharathiar university, coimbatore. 2002.
- 9. Palaniappan N, Rao KC. Regular generalized closed Sets, Kyungpook, Math. J. 1993; 33(2):211-219.
- 10. Levine N. Generalized closed sets in topology, Rend.Circ Mat. Palermo. 1970; 19(2):89-96.
- 11. Wali RS. on some topics in general and fuzzy topological spaces; ph.d thesis Karnatak university thesis. 2007.
- 12. Malgan SR. Generalized closed maps. J karnatak university sci. 1982;27:82-88.
- 13. Arockiarani I. studies on generalization of generalized closed sets and maps in topological spaces; ph.d thesis, Bharathiar university, coimbatore. 1997.
- 14. Wali RS, Vivekananda Dembre. On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces. Journal of Computer and Mathematical Sciences. 2015; 6(2):113-125.

- 15. Wali RS, Vivekananda Dembre. On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods in Topological Spaces Annals of Pure and Applied Mathematics. 2015; 10(1). Published on 12 April 2015
- 16. Wali RS, Vivekananda Dembre. On Pre Generalized Pre Regular Weakly irresolute and pgprw-Continuous functions in Topological Spaces; Asian journal of current Engineering and Maths (accepted). 2016.
- 17. Crosseley SG, Hilderbrand SK. semi-topological properties, fund math. 1972; 74:233-254.
- 18. Wali RS, Vivekananda Dembre. on pgprw-continuous functions in topological spaces. Bulletin of mathematics and statistics research. 2016; 4(1).
- 19. Crosseley SG, Hilderbrand SK. semi-topological properties, fund math. 1972; 74:233-254.
- 20. El-deeb N, Hasanein IA, Noiri T, Mashhour AS. on pre regular spaces, bull. math, soc. sci. math R.S.Roumanie. 1983; 27:311-319.
- 21. Noiri TA, Maki H, Umehara J. gp functions, mem, fac. sci. kochi univ. math. 1998; 20:13-28.
- 22. Noiri TA. a-generalization-of-closed-mappings, atti, acad. naz.lincei rend. cl. scifis. mat. natur. 1973; 54:412-415.
- 23. Govindappa Navalagi, Chandrashakarappa A.S. & S.V.Gurushantanavar, Int. Jour of Mathematical sciences. 2012; 2(1):231-237. gspr functions in topological spaces.