KARNATAK UNIVERSITY JOURNAL OF SCIENCE 50 (2016) 53-61 53

ISSN:0075-5166

Karnatak University Journal of Science
journal homepage: www.kud.ac.in

On the Wiener index of total graph and its complement

B. Basavanagoud*, C. S. Gali and V. R. Desai

Department of Mathematics, Karnatak University, Dharwad 580 003, India

ARTICLE INFO

ABSTRACT

Article history:

Received date 16 December 2015
Received in revised form 6 January 2016
Accepted date 25 January 2016

Given a simple connected graph (5 , the Wiener index W(G) of G is
defined as half the sum of distances over all pairs of vertices of (G . In
practice, (7 corresponds to what is known as the molecular graph of an

organic compound. In this paper, we obtain the Wiener index of total graph
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and its complement for some standard class of graphs, we give bounds for
Wiener index of total graph and its complement also establish Nordhaus-
Gaddum type of inequality for this.

1. Introduction

In this paper, we are concerned with finite, undirected,
connected, simple graph (G with vertex set

V(G):{vl,vz,...,vn} and
E(G):{v'l,v'z,...,v'm}. The distance between two

edge set

vertices V; and V, , denoted by d (V,,v]) is the length
of the shortest path between the vertices V; and V; in
G - The shortest V, —V; path is often called geodesic.
The diameter diam(G) of a connected graph G is
the length of any longest geodesic. The degree [7]of a
vertex V, in (G is the number of edges incident to V,
and is denoted by d, = deg (Vi) :

The Wiener index is a graph invariant that belongs
to the molecules structure-descriptors called topological
indices, which are used for the design of molecules with
desired properties.

The Wiener index( or Wiener number)[11] of a graph
G ,denoted by W ( G) is the sum of distances between
all (unordered) pairs of vertices of (G , that is

w(G)= Zd(V, V‘/)

i<

* Corresponding author: b.basavanagoud@gmail.com

The Wiener index W(G) of the graph G [3.6] is

also expressedas
1
w(G)=7 > d(viv)
v,,vjEV(G)

where the summation is over all possible pairs

V.V, € V(G).

Line graphs, total graphs and middle graphs are
widely studied transformation graphs. Let
G :(V(G),E(G)) be a graph. The Iline
graphL(G)[l] of (G isthe graph whose vertex set is
E(G) in which two vertices are adjacent if and only if
they are adjacent in (G . The vertices and edges of a
graph are called its elements. Two elements of a graph
are neighbors if they are either incident or adjacent. The
total graph T (G) [7] has vertex set V(G)UE (G) ,
and two vertices of 7’ (G) are adjacent whenever they
are neighbors in G . If G is a (n,m) graph whose
vertices have degrees d,, then the total graph T’ (G)

1& ,
has #,=n+m vertices and "% :2m+52d[
i1

edges. The complement of G , denoted by G , is the
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graph with the same vertex set as (G , where two vertices
are adjacent if and only if they are not adjacent in (G .
We denote the complement of total graph T (G) of GG

by T (G) The complement of total graph T (G) isa
graph whose vertex set is V(G)UE (G), and two
vertices of T (G) are adjacent whenever they are not
neighbors in G . A tree is called a double star[2] S 4
if it obtained from Sp and S , by connecting the center
of Sp with that of Sq via an edge. For notations and
undefined terminologies we follow [7].

The following Theorems are useful for proving our
main results.

Theorem 1.1 [8]. For every tree T of order n,
n
(1)) (1)-( 3]

Theorem 1.2 [4]. Let (G be a connected graph with
degree 5(6’)22. Then
w (G) <w (L (G)) . Equality holds only for cycles.

minimum

Theorem 1.3 [9]. If G is a (n,m) graph with
diam(G) <2 then
W(G)=n(n-1)—m.
Theorem 1.4 [10]. If B, is a path of order n, then
_ I’l3 —n

w(R)="

n

Theorem 1.5 [10]. If Sn is a star of order n, then
w(S,)=(n-1)".

Theorem 1.6 [10]. If Cn is a cycle of order n, then

’18—3 if nis even.
me)-| s

n

= if nis odd.

Theorem 1.7 [2]. For any tree T of order n,
w(S)<w(T)<w(R).

Theorem 1.8 [5]. Let G be a connected graph with
nivertices and m edges. Then

- 2m
D.d :m[m+(n—2)] if and only if G is a
i=1
star graph or a complete graph.
Theorem 1.9 [9] For any graph G of order n,
size m with diam(G)Z?),

W(G)an —-n—m+1
holds. Further, the equality holds, if G contains

exactly two vertices of eccentricity three and rest
are of eccentricity two.

2. Results

Theorem 2.1 Let T be a tree of order n. Then
n
WI(T(T))=4W(T)-
(r(0)=aw (r)-( 3]

Proof. Let V = {vl,vz, ...,vn} be the vertex set and
E= {v’l,v'z,...,v'n_l} be the edge set of atree T. Then
T (T ) is the total graph of tree 77 with the vertex
set V'= Vu{v‘l,v'2,...,v'n_1 } , where V', is vertex of
a total graph corresponding to the edge of tree.
Splitting the summation of Wiener index of T (T )

into four parts,

W(T (T )) =half of the shortest distance between
the vertices v, and Vv,

+half of the shortest distance between the vertices
V'l. and V }

+half of the shortest distance between the vertices
v, and % ;

+half of the shortest distance between the vertices
V ; and v f
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1 1 C
W(T(T))=5 zpd(vl.,vj)+5 ZI d(v,.v))
d(v,v))+d(v,v,)+..+d (v, V)
+d (v, V) ) +d (v, V) +ot d (v,,0,)
S T TS TS +
+d(vn,v'1)+d(vn,v'2)+...+d(vn,v'nfl)

d(v\,m)+d(V,,v,)+.td(V,v,)
+d(V'2,V1)+d(v'z,v2)+...+d(v'2,vn)
e S o Senciricais +
+d(V,.v)+d (Vv )+ v d(V,,,)

n=1°>"n

W(T(T))=% Z ,d(v,. v_/.)+% Z d(v',.,v'_/.)
v,8V v,V EE
d(v,v)+d(v,v,)+..+d(v,v,,)
+d (v, v )+ d(v,, 0, )+ + d (V35 v,,)
=9t e i F oreerreeeeeens +
+d(vn,v1)+d(vn,v2)+...+d(vn,vn;1)

d(v,v)+d(v,v,)+..+d(v,v,)

+d (v, 1) +d (v,,v,) +. 4 d (v, 0,)
Rk T YR Forrreereeeeens Forreeeeees +

+d (v, ) +d (v, v) ot d(v,0,v,)

n-1°"n

From Theorem 1.1, we have
n
W\T(T))=4w (T )-
(r(o)=aw (r)-{ 3]
Corollary 2.2 Let S,7 be a star graph of order N

2
-1
Then W(T(Sn)) :w

Proof: A star S is also a tree hence from

Theorem 2.1, we have

n
w(r(s)) - (s)-{ |
From Theorem 1.5,

W(1(s,))=4n-17 _n(n-1) 7 “15n+8

2 2
Corollary 2.3 Let Pn be a path of order n. Then
n(4n* =3n-1
w(T(R,)) =(f).

Proof. A path Pn is also a tree hence from Theorem

2.1, we have

n
W(T(P))=4W (P )-
(1) ()3
From Theorem 1.4, we have

W (1(5))= 4(n36_n) _n(4n’=3n-1) |

! 6
Corollary 2.4 For any tree T of order n,

(1 (5,)) < (7(7)) < (T (R).
Proof. From Theorem 1.7, we have

w(s,)<w(r)<w(E)




56 KARNATAK UNIVERSITY JOURNAL OF SCIENCE 50 (2016) 53-61

From Theorem 2.1, Corollaries 2.2 and 2.3, we have
w(r(s,)<w(1(T))<w(T(P)).
Theorem 2.5 Let C,'l be the cycle of ordern. Then

()=

Proof. Let V = {vl,vz,...,vn} be the vertex set and
E:{v'l,v'z,...,v'n} be the edge set of Cn Then
T (Cn) is the total graph of cycle C:Q with vertex set
V= Vu{v'l,v'z,...,v'n}, where v’,. is vertex of a total

graph corresponding to the edge of cycle. Splitting the
summation of Wiener index of T (Cn) into four parts,

w (T (C i )) = half of the shortest distance between
the vertices V; and V;
+ half of the shortest distance between the vertices
v’i and V I
+ half of the shortest distance between the vertices
v, and v ;
+ half of the shortest distance between the vertices
v',. and v f
1

w(1(C,))=5 2 d(“%)*% 2 d(viv))

el
Vv, EV ViV el

d(v,v))+d (v, V) +..+d (v, V)
+d (v, V) ) +d(v,, V) +. 4 d(v,,0)

N | =

+d (v, V) +d (v, V,)+...+d(v,,V,)

d(v'l,vl)+d(v’1,v2)+...+d(v'1,vn)
+d(v’2,v1)+d(v'2,v2)+...+d(v'2,vn)

+d(V,,v)+d(V,, 0, )+ +d(V,,0,)

1 1
—— d(v,v, |+= d\v',v',
W(T(Cn)) 2\)1;1/ ( 1) 2%%; ( J)
d(v.v)+d(vv,)+...+d(w,v,)+diam(T(C,))
+a’(v2,vl)+a’(v2,v2)+...+d(v2,vn)+diam(T(Cn))
L= £ A— A —— g ¢ VPR +
+d(v,,v)+d(v,,v,)+...+d(v,,v,)+diam(T(C,))

d(vl,v,)+d(vl,v2)+...+d(vl,v,,)+diam(T(C,,))
+d (v, v))+d (v, v,) +. v d(v,,0, ) + diam(T(C,))
b T ot i e e e v +
+d (v, v,)+d(v,,v,)+...+d(v,,v,)+diam(T(C,))

n>’n

N | =

w(r(c,))= W(C,,)+W(L(C,,))+2{YIVZ;‘Vd(v, v, )+n diam(T(Cﬂ))}

From Theorem 1.2, we have

W(T(cn>>=W(g)w(cn)u{w(q)wwm_mq»}

2

w(r(C,))=4w (C,)+n diam(T(C,)).

n+l1

Case 1. For an odd cycle, diam(T(C,,)) )

and

from Theorem 1.6, we have

(r(c) =4[5t oo 250 D)

2

Case 2. For an even cycle, diam (T (C,)) == and
from Theorem 1.6, we have

3

W(T(Cn)):4(n—j+£:M.

8 2 2

From the above two cases, we have

()=
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Theorem 2.6 If Ig is a complete graph of order n,
n’ (n2 - 1)

then W (T (K, )) = 7

Proof. Let K, be a complete graph with » vertices and
_n (n — 1)
" 2
Zd ;=n(n=1" anq T(Kn) has n; =
=1

3

edges. Then from Theorem 1.8,
n+n
2

vertices and M, = edges.

InT (K,,) distance between adjacent vertices is one
and distance between nonadjacent vertices is two,

therefore diam(T (K )) =2,

n

From Theorem 1.3, we obtain the result.

Next, we determine the Wiener index of total graph of
wheel. The wheel|7] invented by W. T. Tutte. For 5 > 4,
wheel VZ is defined to be the graph Kl +Cn—l‘
Theorem 2.7 If VK is a wheel graph of order n >4,
then

w(T(w,

n

17n* —45n+28
)= -

2
Proof. Let VK be a wheel graph with 5 > 4 vertices,
m=2(n—1) edges and one vertex is of degree
( n— 1) and remaining ( n— 1) vertices are of degree

3. Then Z dl.zz(n—l)(n+8) and T(Wn) has
i=1
n +15n-16

edges.
B g

n, =3n—2 vertices and M, =

InT (Wn), distance between adjacent vertices is one

and distance between nonadjacent vertices is two,

therefore diam(T’ (Wn) =2.
From Theorem 1.3, W(T(W; )) =n, (nT —1) —m,

w (7 (7,)) = (3n-2) (3n-3)
_(nz +15n—16J: 17n° —45n+28

2 2

Next, we determine the Wiener index of total graph of
bipyramid graph. For p > 5, bipyramid graph [6] is
defined to be the graph C,_, + (E Uh ) :

Cy+ (PLUP):

Theorem 2.8 If (G is a bipyramid graph of order
n=>>5, then

W(T(G))=15n"—62n+66.

Proof Let (G be abipyramid graph with > 5 vertices
and m=3 (n - 2) edges, and two vertices are of degree

(n—Z) and remaining (n—Z) vertices are of degree

4. Then ZdI.Z:Z(n—Z)(n+6) and T(G) has

il
1, =4n—6 vertices and m, = " +10n—24 edges.

In total graph of bipyramid graph distance between
adjacent vertices is one and distance between
nonadjacent vertices is

diam (T (G))=2.

two, therefore

From Theorem 1.3, we have
w(T(G))=n,(n,-1)—m,
W (T(G))=(4n—6)(4n-17)

—[nz +10n—24]=15n2 —62n+66

Theorem 2.9 Let T ¢Sn,Sp’q be a tree of order n.
Then

W(T(T*)):2n2—n—1+%idf
i=1

Proof In T (T *) the distance between adjacent vertices
is one and distance between nonadjacent vertices is two,
therefore diam (T(T* )) =2 . From Theorem 1.3,
we have
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W(]T(T*))znf(nf—l)—mf,

Here 72, =n-+m and
{3 HemaEe
Therefore 7 (T(1")) =(”;m)+2m+%§df .
For tree, =1, therefore
w(7(r")) :(2n2_1]+2(n—1)+%§d[2
w(T(1)) =27 —n—1+%§¢2.

If 7* is a star, then T (T *) has one isolated vertex.
Hence T (T *) is disconnected, obviously Wiener index

is not defined.

Corollary 2.10 If BI is a path of order yn > 5, then
W(T(Pn)):Zn2 +n—-4.

Proof. For p>5 path is not a double star. From
Theorem 2.9, we have

- 2 ln 2
w(T(R,))=2n"-n 1+2;d,,

For path, p=p5n—1, two vertices of degree one and
remaining (n—Z) vertices of degree two. Therefore
Z a’l.2 =2(1)° +(n—2)22 = 2(2n—3) )

Vi;l(f(Pn)) =2n’ —n—1+%2(2n—3)
w(T(R,))=2n"+n-4.

Theorem 2.11 If S p.q 18 adouble star of order n, then

_ 1
W(T(SM)):Zn2 —n+§;d[2'

Proof. In T (S ra ) , distance between two nonpendant

vertices is three and all other pair of vertices is two.

Therefore T (S M) contain exactly two vertices of

eccentricity three and rest are of eccentricity two.
From Theorem 1.9, we

W(]T(Spyq)):ng—nf—mf+l

T

have

_ 1&
w(T(s,,))=27 —n+5;a’i2.
Corollary 2.12 For any nontrivial tree T of order
nz4, w(T(p,))<w(T(T)).
Proof. The value of Zdiz is least for path among all
T i=1
Therefore W (T (P,)) <W (YT(T*)).

From Tlgeorems 2.9 and 2.11, it is clear that
w(T(1"))<w(T(s,,)).

Therefore W (T (P,)) < W(]T(T*)) < W(YT(SM)).
Obviously, W(T(P,J)SW(T(T))

Theorem 2.13 If Cn is a cycle of order pn> 4, then
w(T(C,))=n(2n+3).

Proof.In T (Cn) distance between adjacent vertices is

one and distance between nonadjacent vertices is two,
therefore diam(T (C )) =2.

n

From Theorem 1.3, we have
W(Y_”(C”)) =Ny (nf —l)—mf.

Here 72, =n+m and
n+m 1&
mT=( 5 ]—(2m+E;de
— n+m 1<
ThereforeW(T(Cn))=( 5 \)+2m+§zdi2
i=1

Forcycle m=n and all vertices of degree 2. Therefore

Zn:df =2’n =4n

i=1

Thus W(Z_“(C,,))=(§nJ+2n+%=n(2n+3).
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Theorem 2.14 [f Kl is a complete graph of order

n>4, then W(T(K,))= ”(”_1)(”8+1)(”+6) '

Proof. In T (Kn) the distance between adjacent vertices

is one and distance between nonadjacent vertices is two,

therefore diam(f (Kn )) =2,

From Theoreml.3, we have
W(T(K,,)) =n; (n; —1)—my.

Here " =n-+m and

n+m 1
= —| 2m+=Y d’
(3" o354

For complete graph 7= and from Theorem

1.8, we have Zdzz :”(n_l)z.

i=1

_ n(n-1)(n+1)(n+6
Theorem 2.15 If VK is a wheel of order > 4, then

w(T(w,))=5(n-1)(n+1).

Proof. In T (Wn) the distance between adjacent vertices

is one and distance between nonadjacent vertices is two,

therefore diam(T (W )) =2.

n

From Theorem1.3, we have

W(T(W ))=nf (nT —1)—mf.

n

Here " =n-+m and

n+m 1&
== — 2m+=>d’
{7 ozt

W(T(%)){";m}zm%idf

i=1
For wheel m = 2(n - 1) , one vertex is of degree 5—1

and y—1 vertices of degree three.
Therefore

S & =1(n=17 +(n-1)3* =(n-1)(n+8)

=1
W(T(W"))=(3”;2){4(,7_1)%(”_1)(%s)]
W (T(,))=5(n=1)(+1).

Theorem 2.16 Let (G be a bipyramid graph of order
n>5. Then

w(T(G))=9n"-16n-3.

Proof. In T (G) the distance between adjacent vertices

is one and distance between nonadjacent vertices is two,

therefore diam (T(G)) =2.

From Theorem 1.3, we have
W(T(G)) =n; (nf —1)— m.

Here 1. =n+m and

n+m 1
o= —| 2m+=>d’
"3 Home st

W(T(%)){";m)ﬁm%idf

i=1

For bipyramid graph m = 3(1’1—2) and two vertices

ofdegree y; — 2 and remaining 5 — 2 vertices of degree

four.
Therefore

i d’ =2(n-2)’ +(n—2)42 = 2(n—2)(n+6).
Thus
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W(T(G)):(4n2_6)+2[3(n—2)}+%2(n—2)(n+6)

w(T(G))=9n"-16n-3.
Theorem 2.17 If (G is a connected graph of order
n>2, then W(G)<W(T(G)).

Proof- Let (G be aconnected graph with 7jvertices and

m edges. Then T (G) is a total graph with 72, =n+m

1 n
and My =2m +Ezdi2 edges.

i=1
Wiener index of a graph increases when new vertices
are added to it and (G is induced subgraph of

T(G) .Therefore W(G) < W(T(G)).

Lemma 2.18 If G is a connected graph of order n,

then
2 2
T —15n+8 n* (n* -1)
— W\ T(G)) f————.
S e (r(6) <
Upper bound attains if (G is complete graph and lower

bound attains if (7 is a star graph.

Proof- Let (G be aconnected graph with 7jvertices and

m edges. Then T(G) be the total graph with

| QR
N, =n-+m vertices and "y = 2m +Ezdi edges.
i=1
For any graph (G has maximum number of edges if
and only if GEK, and T (G) has maximum number
of vertices if and only if GEK,.

As Wiener index of a graph increases when new vertices
are added to a graph, and T (Kn ) has maximum number

number of vertices compared to any other 7' (G) .

w(T(G))<w(T(K,)).

n (n2 —1) .

F Th 26, W(T(G)) <
rom Theorem ( ( ))< 2

(D

Similarly, W(T(T)) < W(T(G)).
From Corollary 2.4, W (T(S”)) <w (T (T))
It follows that, W (T'(S,)) <" (T (G)).

Tn* —15n+8

From Corollary 2.2, < W(T(G)) .

)
From (1) and (2)we have the result.

Lemma 2.19 Let (G is a connected graph of order
n>5. Then

27" +n—-4<W(T(G))<

n(n—l)(n+1)(n+6)'
8

Upper bound attains if (G is complete graph and lower
bound attains if (7 is a path graph.

Proof. Let (G be connected graph with 5 > 5 vertices

and m edges. Then T (Kn) has 1. =n+m vertices
n+m

1 n
and M7 = - 2m+_2d1’2 edges.
2 23

If G has maximum edges if and only if GEK,, then
T (G) has maximum number of vertices if and only if

G=K,.

Wiener index of a graph increases when new vertices
are added to the graph and T (Kn) has maximum

number of vertices compared to any other T (G)
Therefore W(T(G)) < W(T(Kn)) .
From Theorem 2.14,

W(Y_"(Kn))z n(n—l)(n8+1)(n+6) |
Therefore W(T(G))S n(n_l)(n8+l)(n+6)- 3)

Similarly, W (T (7)) <W (T (G))
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From Corollary 2.12, W(T(Pn))SW(T(T))

Obviously, W(T(Pn)) < W(T(G))
From Corollary 2.10, we have

2n’ +n—4<W (T (G)). (4)
From (3) and (4),
2r +n-4<W(T(G))< n(n_l)(n8+1)(n+6).

The following theorem gives the Nordhaus-Gaddum

[12] type inequality for Wiener index of total graph.

Theorem 2.20 If (G is a connected graph of order
n>5, then

@gw(r(g))w(f(g))

S3n(n—l)(n+l)(n+2)
8

Proof. From Lemmas 2.18 and 2.19, we have

Mﬂnz+n_4sw(r(6))+W(T(G))

B nz(ﬂ2 —1)+ n(n-1)(n+1)(n+6)
4 8

n(lln—13)

< (T(G))+W(T(G))

< 3n(n—1)(n+1)(n+2)
8
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