THIRD ZAGREB INDICES AND COINDICES OF GENERALIZED TRANSFORMATION GRAPHS AND THEIR COMPLEMENTS

B. BASAVANAGOUD, VEENA R. DESAI

Abstract: In this paper, the expressions for third Zagreb indices and coindices of generalized transformation graphs G^{ab} and their complement graphs $\overline{G^{ab}}$ are obtained.

Keywords: Generalized transformation graphs G^{ab}, Zagreb index, Zagreb coindex.

Introduction: Let *G* be a simple, undirected graph with *n* vertices and *m* edges. Let V(G) and E(G) be the vertex set and edge set of *G* respectively. If *u* and *v* are adjacent vertices of *G*, then the edge connecting them will be denoted by *uv*. The degree of a vertex *u* in *G* is the number of edges incident to it and is denoted by $d_G(u)$. The complement of *G*, denoted by \overline{G} , is a graph having the same vertex set as *G*, in which two vertices are adjacent if and only if they are not adjacent in *G*. Thus, the size of \overline{G} is $\binom{n}{2} - m$ and $d_{\overline{G}}(v) = n - 1 - d_G(v)$ holds for all $v \in V(G)$.

For terminology not defined here we refer the reader to [5].

In theoretical chemistry, the physico-chemical properties of chemical compounds are often modeled by means of molecular-graph-based structuredescriptors, which are also referred to as topological indices [4], [8]. The first and the second Zagreb indices, respectively, defined

 $M_1(G) = \sum_{u \in V(G)} d_G(u)^2$ and

 $M_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(v)$

are widely studied degree-based topological-indices, that were introduced by Gutman and Trinajstic' [3] in 1972.

In [2], G. H. Fath-Tabar introduced a new Zagreb index of a graph G named as "third Zagreb index" and is defined as:

 $M_3(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|.$

Recently, Veylaki et al. [9] introduced third Zagreb coindex and is defined as:

 $\overline{M_3}(G) = \sum_{uv \notin E(G)} |d_G(u) - d_G(v)|.$

The following earlier established results will be needed for the present considerations.

Theorem 1.1 [9] Let G be a simple graph. Then $\overline{M_3}(G) = M_3(\overline{G})$.

Theorem 1.2 [9] Let G be a simple graph. Then $\overline{M_3}(\overline{G}) = M_3(G)$.

Generalized transformation graphs G^ab: The semitotal-point graph $T_2(G)$ of a graph G is a graph whose vertex set is $V(T_2(G)) = V(G) \cup E(G)$ and two vertices are adjacent in $T_2(G)$ if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and other is an edge of G incident with it. It was introduced by Sampathkumar and Chikkodimath [7]. Recently some new graphical transformations were

defined by Basavanagoud et al. [1], which generalizes the concept of semitotal-point graph.

The generalized transformation graph G^{ab} is a graph whose vertex set is $V(G) \cup E(G)$, and $\alpha, \beta \in V(G^{ab})$. The vertices α and β are adjacent in G^{ab} if and only if (*) and (**) holds: (*) $\alpha, \beta \in V(G), \alpha, \beta$ are adjacent in *G* if a = + and α, β are not adjacent in *G* if a = -. (**) $\alpha \in V(G)$ and $\beta \in E(G), \alpha, \beta$ are incident in *G* if b = + and α, β are not incident in *G* if b = -.

One can obtain the four graphical transformations of graphs as G^{++} , G^{+-} , G^{-+} and G^{--} . The vertex v_i of G^{ab} corresponding to a vertex v_i of G is referred to as point vertex and vertex e_i of G^{ab} corresponding to an edge e_i of G is referred to as line vertex.

In [1], we obtained the expressions for first and second Zagreb indices and coindices for generalized transformation graphs G^{ab} and their complements $\overline{G^{ab}}$. Now we obtain the expressions for third Zagreb indices and coindices for generalized transformation

graphs G^{ab} and their complements $\overline{G^{ab}}$.

Proposition 2.1 [1] Let G be a (n,m)-graph. Then the degree of point and line vertices in G^{ab} are

1. $d_{G}^{++}(v_i) = 2d_G(v_i)$ and $d_{G}^{++}(e_i) = 2$.

- 2. $d_{G^{+-}}(v_i) = m$ and $d_{G^{+-}}(e_i) = n 2$.
- 3. $d_{G^{-+}}(v_i) = n 1$ and $d_{G^{-+}}(e_i) = 2$.
- 4. $d_G^{--}(v_i) = n + m 1 2d_G(v_i)$ and $d_G^{--}(e_i) = n 2$.

Proposition 2.2 [6] Let G be a (n,m)-graph. Then the degree of point and line vertices in $\overline{G^{ab}}$ are

- 1. $d_{\overline{G^{++}}}(v_i) = n + m 1 2d_G(v_i)$ and $d_{\overline{G^{++}}}(e_i) = n + m 3$.
- 2. $d_{\overline{c^{+-}}}(v_i) = n 1$ and $d_{\overline{c^{+-}}}(e_i) = m + 1$.

3.
$$d_{\overline{c^{-+}}}(v_i) = m$$
 and $d_{\overline{c^{-+}}}(e_i) = n + m - 3$.

4.
$$d_{\overline{G^{--}}}(v_i) = 2d_G(v_i)$$
 and $d_{\overline{G^{--}}}(e_i) = m + 1$.

Results:

Theorem 3.1 Let G be a graph with n vertices and m edges. Then $M_3(G^{++}) \leq 2M_3(G) + 4m + 2M_1(G)$.

Proof. Partition the edge set $E(G^{++})$ into subsets E_1 and E_2 , where $E_1 = \{uv | uv \in E(G)\}$ and $E_2 = \{ue| the vertex u is incident to the edge e in G\}.$ It is easy to check that $|E_1| = m$ and $|E_2| = 2m$. $M_3(G^{++}) = \sum_{uv \in E(G^{++})} |d_{G^{++}}(u) - d_{G^{++}}(v)|$

$$= \sum_{uv \in E_1} |d_{G^{++}}(u) - d_{G^{++}}(v)| + \sum_{ue \in E_2} |d_{G^{++}}(u) - d_{G^{++}}(e)|$$

Mathematical Sciences International Research Journal : Volume 5 Issue 1 (2016)

By Proposition 2.1, we have $=\sum_{uv\in E_1} |2d_G(u) - 2d_G(v)| + \sum_{ue\in E_2} |2 - 1|$ $2d_G(u)$ $\leq 2M_3(G) + \sum_{u \in V(G)} d_G(u)(|2| + |2d_G(u)|)$ $M_3(G^{++}) \le 2M_3(G) + 4m + 2M_1(G).$ **Theorem 3.2** Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{++}}) \le 2\overline{M_3}(G) + 2m(n-2) + 4m^2 - 2M_1(G).$ *Proof.* Partition the edge set $E(\overline{G^{++}})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv | uv \notin E(G)\}, E_2 = \{ue | the vertex u\}$ is not incident to the edge e in G and $E_3 = \{ef | e, f \in E(G)\}$. It is easy to check that $|E_1| = \binom{n}{2} - m, |E_2| = m(n-2) \text{ and } |E_3| = \binom{m}{2}.$ $M_3(\overline{G^{++}}) = \sum_{uv \in E(\overline{G^{++}})} |d_{\overline{G^{++}}}(u) - d_{\overline{G^{++}}}(v)|$ $=\sum_{uv \in E_1} |d_{\overline{G^{++}}}(u) - d_{\overline{G^{++}}}(v)| +$ $\sum_{ue\in E_2} |d_{\overline{G^{++}}}(u) - d_{\overline{G^{++}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{++}}}(e) - d_{\overline{G^{++}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{++}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+}}}(e)| + \sum_{ef\in E_3}$ $d_{\overline{c++}}(f)$ By Proposition 2.2, we have $=\sum_{uv\notin E(G)} |n+m-1-2d_G(u)-(n+m-1)| \leq |u| < |u| <$ $1 - 2d_G(v))| + \sum_{u \in E_2} |n + m - 1 - 2d_G(u) - n -$ $|m+3| + \sum_{ef \in E_3} |n+m-3-n-m+3|$ $=\sum_{uv \notin E(G)} |-2d_G(u)+2d_G(v)| +$ $\sum_{u \in E_2} |2 - 2d_G(u)|$ $=2\overline{M_3}(G) + \sum_{u \in V(G)} (m - d_G(u))(|2 - u|)$ $2d_G(u)|)$ $\leq 2\overline{M_3}(G) + \sum_{u \in V(G)} (m - d_G(u))(|2| +$ $|2d_G(u)|)$ $M_3(\overline{G^{++}}) \le 2\overline{M_3}(G) + 2m(n-2) + 4m^2 -$ $2M_1(G).$ **Theorem 3.3** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{++}) \le 2\overline{M_3}(G) + 2m(n-2) + 4m^2 - 2M_1(G).$ Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.2. **Theorem 3.4** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(\overline{G^{++}}) \leq 2M_3(G) + 4m + 2M_1(G)$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.1. **Theorem 3.5** Let G be a graph with n vertices and m edges. Then $M_3(G^{+-}) = m(n-2)|m-n+2|$. *Proof.* Partition the edge set $E(G^{+-})$ into subsets E_1 and E_2 , where $E_1 = \{uv | uv \in E(G)\}$ and $E_2 = \{ue | the$ vertex u is not incident to the edge e in G]. It is easy to check that $|E_1| = m$ and $|E_2|=m(n-2).$ $M_3(G^{+-}) = \sum_{uv \in E(G^{+-})} |d_{G^{+-}}(u) - d_{G^{+-}}(v)|$ $= \sum_{uv \in E_1} |d_{G^{+-}}(u) - d_{G^{+-}}(v)| +$ $\sum_{u \in E_2} |d_{G^{+-}}(u) - d_{G^{+-}}(e)|$ In view of Proposition 2.1, we have $=\sum_{uv\in E_1} |m-m| + \sum_{ue\in E_2} |m-(n-2)|$ $M_3(G^{+-}) = m(n-2)|m-n+2|.$

Theorem 3.6 Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{+-}}) = 2m|n-m-2|$. *Proof.* Partition the edge set $E(\overline{G^{+-}})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv | uv \notin E(G)\}, E_2 = \{ue | the vertex\}$ u is incident to the edge e in G} and $E_3 =$ $\{ef | e, f \in E(G)\}$. It is easy to check that $|E_1| = \binom{n}{2}$ $m, |E_2| = 2m \text{ and } |E_3| = \binom{m}{2}$ $M_3(\overline{G^{+-}}) = \sum_{uv \in F(\overline{G^{+-}})} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(v)| +$ $\sum_{ue\in E_2} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+-}}}(e) - d_{\overline{G^{+-}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+-}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+}}(e)| +$ $d_{\overline{f^{+-}}}(f)$ In view of Proposition 2.2, we have $=\sum_{uv \notin E(G)} |n-1-(n-1)| + \sum_{u \in E_2} |$ $(m+1)| + \sum_{ef \in E_3} |m+1-(m+1)|$ $=\sum_{ue\in E_2} |n-m-2|$ $M_3(\overline{G^{+-}}) = 2m|n-m-2|.$ **Theorem 3.7** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{+-}) = 2m|n-m-2|$. Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.6. **Theorem 3.8** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(\overline{G^{+-}}) = m(n-2)|m-n+2|$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.5. **Theorem 3.9** Let G be a graph with n vertices and m edges. Then $M_3(G^{-+}) = 2m|n-3|$. Proof. Partition the edge set $E(G^{-+})$ into where subsets E_1 and E_2 , $E_1 = \{uv | uv \notin E(G)\}$ and $E_2 = \{ue | the vertex\}$ u is incident to the edge e in G. It is easy to check that $|E_1| = \binom{n}{2} - m$ and $|E_2| = 2m$. $M_3(G^{-+}) = \sum_{uv \in E(G^{-+})} |d_{G^{-+}}(u) - d_{G^{-+}}(v)|$ $=\sum_{uv\in E_1} |d_{G^{-+}}(u) - d_{G^{-+}}(v)| +$ $\sum_{u \in E_2} |d_{G^{-+}}(u) - d_{G^{-+}}(e)|$ From Proposition 2.1, we have $= \sum_{uv \in E_1} |n - 1 - (n - 1)| + \sum_{ue \in E_2} |n - 1 - 2|$ $M_3(G^{-+}) = 2m|n-3|.$ **Theorem 3.10** Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{-+}}) = m(n-2)|3-n|$. *Proof.* Partition the edge set $E(\overline{G^{-+}})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv | uv \in E(G)\}, E_2 = \{ue | the vertex u\}$ is not incident to the edge e in Gand $E_3 = \{ef | e, f \in E(G)\}$. It is easy to check that $|E_1| = m, |E_2| = m(n-2) \text{ and } |E_3| = \binom{m}{2}.$ $M_3(\overline{G^{-+}}) = \sum_{uv \in E(\overline{G^{-+}})} |d_{\overline{G^{-+}}}(u) - d_{\overline{G^{-+}}}(v)|$ $=\sum_{uv \in E_1} |d_{\overline{G^{-+}}}(u) - d_{\overline{G^{-+}}}(v)| +$ $\sum_{u \in E_2} |d_{\overline{G^{-+}}}(u) - d_{\overline{G^{-+}}}(e)| + \sum_{e_f \in E_3} |d_{\overline{G^{-+}}}(e) - d_{\overline{G^{-+}}}(e)| + \sum_{e_f \in E_3} |d_{\overline{G^{-+}}}(e)| + \sum_{e_f \in E_3}$ $d_{\overline{c^{-+}}}(f)$ From Proposition 2.2, we have

Mathematical Sciences International Research Journal : Volume 5 Issue 1 (2016)

ISSN 2278-8697

 $= \sum_{uv \in E_1} |m - m| + \sum_{ue \in E_2} |m - (n + m - 3)| +$ $\sum_{e \in E_3} |n + m - 3 - (n + m - 3)| = \sum_{u \in E_2} |3 - n|$ $M_3(\overline{G^{-+}}) = m(n-2)|3-n|.$ **Theorem 3.11** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{-+}) = m(n-2)|3-n|$. Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.10. **Theorem 3.12** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(\overline{G^{-+}}) = 2m|n-3|$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.9. **Theorem 3.13** Let G be a graph with n vertices and m edges. Then $M_3(G^{--}) \le 2\overline{M_3}(G) + m(m+1)(n-2) + 4m^2 - m^2$ $2M_1(G)$. *Proof.* Partition the edge set $E(G^{--})$ into subsets E_1 and E_2 , where $E_1 = \{uv | uv \notin E(G)\}$ and $E_2 =$ {ue|the vertex u is not incident to the edge e in G. It is easy to check that $|E_1| = \binom{n}{2} - m$ and $|E_2| = m(n - m)$ 2). $M_3(G^{--}) = \sum_{uv \in E(G^{--})} |d_G^{--}(u) - d_G^{--}(v)|$ $= \sum_{uv \in E_1} |d_G^{--}(u) - d_G^{--}(v)| + \sum_{ue \in E_2} |d_G^{--}(u) - u| = \sum_{uv \in E_1} |d_G^{--}(u)| + \sum_{ue \in E_2} |d_G^{--}(u)| = \sum_{uv \in E_1} |d_G^{--}(u)| + \sum_{ue \in E_2} |d_G^{--}(u)| = \sum_{uv \in E_2} |d_G^{--}($ d_G ---(e) In view of Proposition 2.1, we have $=\sum_{uv\in E_1} |n+m-1-2d_G(u)-(n+m-1)|$

 $= \sum_{uv \in E_1} |n + m - 1 - 2d_G(u) - (n + m - 1 - 2d_G(v))| + \sum_{ue \in E_2} |n + m - 1 - 2d_G(u) - (n - 2)|$

$$\leq 2M_3(G) + \sum_{u \in V(G)} (m - d_G(u))(|m + 1| + |2d_G(u)|) M_3(G^{--}) \leq 2\overline{M_3}(G) + m(m + 1)(n - 2) + 4m^2 - 2M_1(G).$$

References

- 1. B. Basavanagoud, I. Gutman, V. R. Desai, Zagreb indices of generalized transformation graphs and their complements, *Kragujevac J. Sci.* **37** (2015) 99-112.
- G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.
- 3. I. Gutman, N. Trinajstic', Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535-538.
- 4. I. Gutman, O. E. Polansky, *Mathematical Concepts* in Organic Chemistry, Springer, Berlin (1986).
- 5. F. Harary, *Graph Theory*, Addison-Wesley, Reading, Mass (1969).

Theorem 3.14 Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{--}}) \le 2M_3(G) + 2M_1(G) + (m+1)2m.$ *Proof.* Partition the edge set $E(\overline{G^{--}})$ into subsets $E_{1,1}$ E_2 and E_3 , where $E_1 = \{uv | uv \in E(G)\}, E_2 = \{ue | the vertex\}$ u is incident to the edge e in G} and $E_3 =$ $\{ef | e, f \in E(G)\}$. It is easy to check that $|E_1| = m$, $|E_2| = 2m \text{ and } |E_3| = \binom{m}{2}$. $M_3(\overline{G^{--}}) = \sum_{uv \in E(\overline{G^{--}})} |d_{\overline{G^{--}}}(u) - d_{\overline{G^{--}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{G^{--}}}(u) - d_{\overline{G^{--}}}(v)| +$ $\sum_{u \in E_2} |d_{\overline{G^{--}}}(u) - d_{\overline{G^{--}}}(e)| + \sum_{e \in E_2} |d_{\overline{G^{--}}}(e) - d_{\overline{G^{--}}}(e)| + \sum_{e \in E_2} |d_{\overline{G^{--}}}(e)| + \sum_{e \in E_2} |d_{\overline{G^{--}}}$ $d_{\overline{G^{--}}}(f)$ In view of Proposition 2.2, we have $= \sum_{uv \in E_1} |2d_G(u) - 2d_G(v)| + \sum_{ue \in E_2} |2d_G(u) - (m + 1)| + \sum_{ue \in E_2} |2d_G(u)| + \sum_{ue \in E_2} |2d_G(u)|$ 1)| + $\sum_{e \in E_3} |m + 1 - (m + 1)|$ $=2M_3(G) + \sum_{u \in V(G)} d_G(u)(|2d_G(u) - (m+1)|)$ $M_3(\overline{G^{--}}) \le 2M_3(G) + 2M_1(G) + (m+1)2m.$ **Theorem 3.15** Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{--}) \le 2M_3(G) + 2M_1(G) + (m+1)2m.$ Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.14. **Theorem 3.16** Let G be a graph with n vertices and m edges. Then

$$\overline{M_3}(\overline{G^{--}}) \le 2\overline{M_3}(G) + m(m+1)(n-2) + 4m^2 - 2M_1(G).$$

Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.13.

Acknowledgement: This Research Is Supported By Ugc- National Fellowship (Nf) New Delhi. No. F./2014-15/Nf0-2014-15-Obc-Kar-25873/(Salii/Website) Dated: March-2015.

- 6. H. S. Ramane, B. Basavanagoud, R. B. Jammannaver, Harmonic index and Randic' index of generalized transformation graphs, communicated.
- 7. E. Sampathkumar, S. B. Chikkodimath, Semitotal graphs of a graph-I, *J. Karnatak Univ Sci.* **18** (1973) 274-280.
- 8. N. Trinajstic', Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
- 9. M. Veylaki, M. J. Nikmehr, H. A. Tavallaee, The third and hyper-Zagreb coindices of some graph operations, J. Appl. Math. Comput. (2015) doi:10.1007/S12190-015-0872-z.

B. Basavanagoud/ Department of Mathematics/Professor/ Karnataka University/ Dharwad/ Veena R. Desai/ Department of Mathematics/ Research Scholar/ Karnataka University/ Dharwad/