THIRD ZAGREB INDICES AND COINDICES OF GENERATIZED TRANSFORMATION **GRAPHS AND THEIR COMPLEMENTS**

B. BASAVANAGOUD, VEENA R. DESAI

Abstract: In this paper, the expressions for third Zagreb indices and coindices of generalized transformation graphs G^{ab} and their complement graphs $\overline{G^{ab}}$ are obtained.

Keywords: Generalized transformation graphs G^{ab} , Zagreb index, Zagreb coindex.

Introduction: Let G be a simple, undirected graph with *n* vertices and *m* edges. Let $V(G)$ and $E(G)$ be the vertex set and edge set of G respectively. If u and ν are adjacent vertices of G, then the edge connecting them will be denoted by uv . The degree of a vertex u in G is the number of edges incident to it and is denoted by $d_G(u)$. The complement of G, denoted by \overline{G} , is a graph having the same vertex set as G , in which two vertices are adjacent if and only if they are not adjacent in G. Thus, the size of \overline{G} is $\binom{n}{2} - m$ and $d_{\overline{G}}(v) = n - 1 - d_G(v)$ holds for all $v \in V(G)$.

For terminology not defined here we refer the reader

to [s]. In theoretical chemistry, the physico-chemical properties of chemical compounds are often modeled by means of molecular-graph-based structuredescriptors, which are also referred to as topological indices $[4]$, $[8]$. The first and the second Zagreb indices, respectively, defined

 $M_1(G) = \sum_{u \in V(G)} d_G(u)^2$ and

 $M_2(G) = \sum_{uv \in E(G)} d_G(u) d_G(v)$

are widely studied degree-based topological-indices, that were introduced by Gutman and Trinajstic' $\lbrack 3 \rbrack$ in 1972.

In [z], G. H. Fath-Tabar introduced a new Zagreb index of a graph G named as "third Zagreb index" and is defined as:

 $M_3(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|.$

Recently, Veylaki et al. [9] introduced third Zagreb coindex and is defined as:

 $\overline{M_3}(G) = \sum_{uv \notin E(G)} |d_G(u) - d_G(v)|.$

The following earlier established results will be needed for the present considerations.

Theorem 1.1 [9] Let G be a simple graph. Then $\overline{M_3}(G) = M_3(\overline{G}).$

Theorem 1.2 $[g]$ Let G be a simple graph. Then $\overline{M_3}(\overline{G}) = M_3(G).$

Generalized transformation graphs G^ab: The semitotal-point graph $T_2(G)$ of a graph G is a graph whose vertex set is $V(T_2(G)) = V(G) \cup E(G)$ and two vertices are adjacent in $T_2(G)$ if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and other is an edge of G incident with it. It was introduced by Sampathkumar and Chikkodimath [7]. Recently some new graphical transformations were

defined by Basavanagoud et al. [1], which generalizes the concept of semitotal-point graph.

The generalized transformation graph G^{ab} is a graph whose vertex set is $V(G) \cup E(G)$, and $\alpha, \beta \in V(G^{ab})$. The vertices α and β are adjacent in G^{ab} if and only if (*) and (**) holds: (*) $\alpha, \beta \in V(G)$, α, β are adjacent in G if $a = +$ and α , β are not adjacent in G if $a = -$. (**) $\alpha \in V(G)$ and $\beta \in E(G)$, α , β are incident in G if $b=+$ and α , β are not incident in G if $b=-$.

One can obtain the four graphicai transformations of graphs as G^{++} , G^{+-} , G^{-+} and G^{--} . The vertex v_i of G^{ab} corresponding to a vertex v_i of G is referred to as point vertex and vertex e_i of G^{ab} corresponding to an edge e_i of G is referred to as line vertex.

In $[i]$, we obtained the expressions for first and second Zagreb indices and coindices for generalized transformation graphs G^{ab} and their complements $\overline{G^{ab}}$. Now we obtain the expressions for third Zagreb indices and coindices for generalized transformation

graphs G^{ab} and their complements $\overline{G^{ab}}$.

Proposition 2.1 [1] Let G be a (n, m) -graph. Then the degree of point and line vertices in G^{ab} are

1. $d_{G^{++}}(v_i) = 2d_G(v_i)$ and $d_{G^{++}}(e_i) = 2$.

- 2. d_G +- (v_i) = m and d_G +- (e_i) = n 2.
- 3. d_G -+(v_i) = $n-1$ and d_G -+(e_i) = 2.
- 4. $d_G (v_i) = n + m 1 2d_G(v_i)$ and $d_G (e_i) =$ $n-2$.

Proposition 2.2 [6] Let G be a (n, m) -graph. Then the degree of point and line vertices in G^{ab} are

- 1. $d_{\overline{G^{++}}}(v_i) = n + m 1 2d_G(v_i)$ and $d_{\overline{G^{++}}}(e_i) =$ $n+m-3$.
- 2. $d_{\overline{G^{+-}}}(v_i)=n-1$ and $d_{\overline{G^{+-}}}(e_i)=m+1$.

3.
$$
d_{\overline{G^{-+}}}(v_i) = m
$$
 and $d_{\overline{G^{-+}}}(e_i) = n + m - 3$.

4.
$$
d_{\overline{G}} = (v_i) = 2d_G(v_i)
$$
 and $d_{\overline{G}} = (e_i) = m + 1$.

Results:

Theorem 3.1 Let G be a graph with n vertices and m edges. Then $M_3(G^{++}) \leq 2M_3(G) + 4m + 2M_1(G)$.

Proof. Partition the edge set $E(G^{++})$ into subsets E_1 and E_z , where $E_1 = \{uv|uv \in E(G)\}$ and $E_2 =$ ${ue}$ the vertex u is incident to the edge e in G . It is easy to check that $|E_1| = m$ and $|E_2| = 2m$. $M_3(G^{++}) = \sum_{uv \in E(G^{++})} |d_{G^{++}}(u) - d_{G^{++}}(v)|$

$$
= \sum_{uv \in E_1} |d_{G^{++}}(u) - d_{G^{++}}(v)| + \sum_{ue \in E_2} |d_{G^{++}}(u) - d_{G^{++}}(e)|
$$

Mathematical Sciences International Research Journal : Volume 5 Issue 1 (2016)

By Proposition 2.1, we have $=\sum_{uv\in E_1} |2d_G(u) - 2d_G(v)| + \sum_{ue\in E_2} |2-$ edges. Then $M_3(\overline{G^{+-}}) = 2m|n-m-2|$. $2d_G(u)$ Proof. Partition the edge set $E(G^{+-})$ into $\le 2M_3(G) + \sum_{u \in V(G)} d_G(u)(|2| + |2d_G(u)|)$ subsets E_1, E_2 and E_3 , where $M_3(G^{++}) \le 2M_3(G) + 4m + 2M_1(G)$.
 $E_1 = \{uv|uv \notin E(G)\}, E_2 = \{uv|uv \notin E(G)\}$ **Theorem 3.2** Let G be a graph with n vertices and m usincident to the edge e in G and E_3 = edges. Then $M_3(\overline{G^{++}}) \leq 2\overline{M_3}(G) + 2m(n-2) + 4m^2 - 2M_1(G).$ *Proof.* Partition the edge set $E(G^{++})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv|uv \notin E(G)\}, E_2 = \{ue|the \ vertex \ u\}$ is not incident to the edge e in G } and $E_3 = \{ef|e, f \in E(G)\}.$ It is easy to check that $|E_1| = {n \choose 2} - m$, $|E_2| = m(n - 2)$ and $|E_3| = {m \choose 2}$. $M_3(\overline{G^{++}}) = \sum_{u v \in E(\overline{G^{++}})} |d_{\overline{G^{++}}}(u) - d_{\overline{G^{++}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{C^{++}}}(u) - d_{\overline{C^{++}}}(v)| +$ $\sum_{u\in E_2} |d_{\overline{G^{++}}}(u) - d_{\overline{G^{++}}}(e)| + \sum_{e f \in E_3} |d_{\overline{G^{++}}}(e)$ $d_{\overline{c+1}}(f)$ By Proposition z.z, we have $=\sum_{uv \notin E(G)} |n + m - 1 - 2d_G(u) - (n + m |1- 2d_G(v)| + \sum_{u\in E_2} |n + m - 1 - 2d_G(u) - n |m+3| + \sum_{e f \in E_3} |n+m-3-n-m+3|$ $=\sum_{uv \in E(G)} |- 2d_G(u) + 2d_G(v)| +$ $\sum_{ue \in E_2} |2 - 2d_G(u)|$ $=2\overline{M_3}(G) + \sum_{u\in V(G)} (m - d_G(u))$ (|2 - $2d_G(u)$ $\leq 2\overline{M}_{3}(G) + \sum_{u\in V(G)} (m - d_{G}(u))(|2| +$ $|2d_G(u)|$ $M_3(G^{++}) \leq 2\overline{M_3}(G) + 2m(n-2) + 4m^2$ - $2M_1(G)$. Theorem 3.3 Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{++}) \leq 2\overline{M_3}(G) + 2m(n-2) + 4m^2 - 2M_1(G).$ Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.2. Theorem 3.4 Let G be a graph with n vertices and m edges. Then $\overline{M_3(G^{++})} \leq 2M_3(G) + 4m + 2M_1(G)$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.1. Theorem 3.5 Let G be a graph with n vertices and ^m edges. Then $M_3(G^{+-}) = m(n - 2)|m - n + 2|$. *Proof.* Partition the edge set $E(G^{+-})$ into subsets E_1 and E_2 , where $E_1 = \{uv|uv \in E(G)\}\$ and $E_2 = \{ue|the\}$ vertex u is not incident to the edge ^e in G]. It is easy to check that $|E_1|=m$ and $|E_2| = m(n-2)$. $M_3(G^{+-}) = \sum_{uv \in E(G^{+-})} |d_{G^{+-}}(u) - d_{G^{+-}}(v)|$ $=\sum_{uv\in E_1} |d_{G^{+-}}(u) - d_{G^{+-}}(v)| +$ $\sum_{u \in E_2} |d_G - (u) - d_G - (e)|$ In view of Proposition 2.1, we have $=\sum_{uv\in E_1} |m-m| + \sum_{ue\in E_2} |m-(n-2)|$ $M_3(G^{+-}) = m(n-2)|m-n+2|$.

Theorem 3.6 Let G be a graph with n vertices and m $E_1 = \{uv|uv \notin E(G)\}, E_2 = \{ue|the vertex$
u is incident to the edge e in G} and {ef|e, f $\in E(G)$ }. It is easy to check that $|E_1| = {n \choose 2}$ *m*, $|E_2| = 2m$ and $|E_3| = {m \choose 2}$. $M_3(\overline{G^{+-}}) = \sum_{uv \in E(\overline{G^{+-}})} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(v)| +$ $\sum_{ue\in E_2} |d_{\overline{G^{+-}}}(u) - d_{\overline{G^{+-}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{+-}}}(e)$ $d_{\overline{C}}(f)$ In view of Proposition 2.2, we have $=\sum_{uv\in E(G)} |n-1-(n-1)| + \sum_{ue\in E_2} |n-1 (m + 1)| + \sum_{e f \in E_3} |m + 1 - (m + 1)|$ $=\sum_{u\in E_2} |n-m-2|$ $M_3(\overline{G^{+-}}) = 2m|n-m-2|.$ Theorem 3.7 Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{+-}) = 2m|n - m - 2|$. Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.6. Theorem 3.8 Let G be a graph with n vertices and ^m edges. Then $\overline{M_3(G^{+-})} = m(n-2) |m - n + 2|$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.5. **Theorem 3.9** Let G be a graph with n vertices and m edges. Then $M_3(G^{-+}) = 2m|n-3|$. *Proof.* Partition the edge set $E(G^{-+})$ into subsets E_1 and E_2 , where $E_1 = \{uv|uv \notin E(G)\}\$ and $E_2 = \{ue|the\$ u is incident to the edge e in G }. It is easy to check that $|E_1| = {n \choose 2} - m$ and $|E_2| = 2m$. $M_3(G^{-+}) = \sum_{uv \in E(G^{-+})} |d_{G^{-+}}(u) - d_{G^{-+}}(v)|$ $=\sum_{uv\in E_1} |d_{G^{-+}}(u) - d_{G^{-+}}(v)| +$ $\sum_{u \in E_2} |d_{G^{-+}}(u) - d_{G^{-+}}(e)|$ From Proposition 2.1, we have $=\sum_{uv\in E_1} |n-1-(n-1)| + \sum_{ue\in E_2} |n-1-2|$ $M_3(G^{-+})=2m|n-3|$. **Theorem 3.10** Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{-+}}) = m(n-2)|3 - n|$. *Proof.* Partition the edge set $E(G^{-+})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv|uv \in E(G)\}, E_2 = \{ue|the vertex u\}$ is not incident to the edge e in G } and $E_3 = \{ef | ef \in E(G)\}.$ It is easy to check that $|E_1| = m, |E_2| = m(n-2)$ and $|E_3| = {m \choose 2}.$ $M_3(\overline{G^{-+}})=\sum_{u,v\in E(\overline{G^{-+}})}|d_{\overline{G^{-+}}}(u)-d_{\overline{G^{-+}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{G^{-+}}}(u) - d_{\overline{G^{-+}}}(v)| +$ $\sum_{ue\in E_2} |d_{\overline{G^{-+}}}(u) - d_{\overline{G^{-+}}}(e)| + \sum_{ef\in E_3} |d_{\overline{G^{-+}}}(e) -$

 $d_{\overline{C}}(f)$

From Proposition 2.2, we have

Mathematical Sciences International Research Journal: Volume 5 Issue 1 (2016)

ISSN 2278-8697

 $=\sum_{uv\in E_1} |m-m| + \sum_{ue\in E_2} |m-(n+m-3)| +$ $\sum_{eff \in E_3} |n + m - 3 - (n + m - 3)| = \sum_{ue \in E_2} |3 - n|$ $M_3(\overline{G^{-+}}) = m(n-2)|3-n|.$ Theorem 3.11 Let G be a graph with n vertices and m *edges.* Then $\overline{M_3}(G^{-+}) = m(n-2)|3-n|$. Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.10. **Theorem 3.12** Let G be a graph with n vertices and m edges. Then $\overline{M_3(G^{-+})} = 2m|n-3|$. Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.9. Theorem 3.13 Let G be a graph with n vertices and m edges. Then $M_3(G^{--}) \leq 2\overline{M_3}(G) + m(m+1)(n-2) + 4m^2$ $2M_1(G)$. *Proof.* Partition the edge set $E(G^{--})$ into subsets E_1 and E_2 , where $E_1 = \{uv|uv \notin E(G)\}$ and $E_2 =$ $\{ue|the$ vertex u is not incident to the edge e in G }. It is $M_3(G^{--}) = \sum_{u v \in E(G^{--})} |d_G^{--}(u) - d_G^{--}(v)|$ $=\sum_{uv\in E_1} |d_{G^{--}}(u)-d_{G^{--}}(v)|+\sum_{ue\in E_2} |d_{G^{--}}(u)-$ In view of Proposition 2.1, we have $=\sum_{uv\in E_1} |n+m-1-2d_G(u)-(n+m-1)$

easy to check that $|E_1| = {n \choose 2} - m$ and $|E_2| = m(n - 1)$ 2).

 $d_{G} - (e)$

 $1-2d_G(v)$ + $\sum_{u \in E_2} |n+m-1-2d_G(u) - (n-1)$ $2)$

$$
\leq 2M_3(G) + \sum_{u \in V(G)} (m - d_G(u)) (|m + 1| + |2d_G(u)|)
$$

\n
$$
M_3(G^{-1}) \leq 2M_3(G) + m(m + 1)(n - 2) + 4m^2 - 2M_1(G).
$$

References

- B. Basavanagoud, I. Gutman, V. R. Desai, Zagreb 1. indices of generalized transformation graphs and their complements, Kragujevac J. Sci. 37 (2015) 99-112.
- 2. G. H. Fath-Tabar, Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 79-84.
- 3. I. Gutman, N. Trinajstic', Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
- 4. I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
- 5. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass (1969).

Theorem 3.14 Let G be a graph with n vertices and m edges. Then $M_3(\overline{G^{--}}) \leq 2M_3(G) + 2M_1(G) + (m+1)2m$. *Proof.* Partition the edge set $E(G^{--})$ into subsets E_1 , E_2 and E_3 , where $E_1 = \{uv|uv \in E(G)\}, E_2 = \{ue|the \ vertex\}$ u is incident to the edge e in G } and $E_3 =$ $\{ef|e, f \in E(G)\}.$ It is easy to check that $|E_1| = m$, $|E_2| = 2m$ and $|E_3| = {m \choose 2}$. $M_3(\overline{G^{--}}) = \sum_{uv \in E(\overline{G^{--}})} |d_{\overline{G^{--}}}(u) - d_{\overline{G^{--}}}(v)|$ $=\sum_{uv\in E_1} |d_{\overline{G}}(u)-d_{\overline{G}}(v)| +$ $\sum_{u \in E_2} |d_{\overline{G}}(u) - d_{\overline{G}}(e)| + \sum_{e f \in E_2} |d_{\overline{G}}(e) - d_{\overline{G}}(e)|$ $d_{\overline{G}} = (f)$ In view of Proposition 2.2, we have $=\sum_{uv\in E_1} |2d_G(u)-2d_G(v)| + \sum_{ue\in E_2} |2d_G(u)-(m+1)|$ 1)| + $\sum_{e f \in E_3} |m + 1 - (m + 1)|$ = $2M_3(G) + \sum_{u \in V(G)} d_G(u) (|2d_G(u) - (m + 1)|)$ $M_3(\overline{G^{--}}) \leq 2M_3(G) + 2M_1(G) + (m+1)2m$. Theorem 3.15 Let G be a graph with n vertices and m edges. Then $\overline{M_3}(G^{--}) \leq 2M_3(G) + 2M_1(G) + (m+1)2m$. Proof. The proof of the theorem follows from Theorem 1.1 and Theorem 3.14. Theorem 3.16 Let G be a graph with n vertices and m edges. Then

$$
\overline{M_3(G^{-1})} \leq 2\overline{M_3}(G) + m(m+1)(n-2) + 4m^2 - 2M_1(G).
$$

Proof. The proof of the theorem follows from Theorem 1.2 and Theorem 3.13 .

Acknowledgement: This Research Is Supported By Ugc- National Fellowship (Nf) New Delhi. No. F./2014-15/Nf0-2014-15-Obc-Kar-25873/(Salii/Website) Dated: March-2015.

- 6. H. S. Ramane, Basavanagoud, R. B. **B.** Jammannaver, Harmonic index and Randic' index of generalized transformation graphs, communicated.
- 7. E. Sampathkumar, S. B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ Sci. 18 (1973) 274-280.
- 8. N. Trinajstic', Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
- 9. M. Veylaki, M. J. Nikmehr, H. A. Tavallaee, The third and hyper-Zagreb coindices of some graph operations, J. Appl. Math. Comput. (2015) doi:10.1007/s12190-015-0872-z.

B. Basavanagoud/Department of Mathematics/Professor/ Karnataka University/Dharwad/ Veena R. Desai/ Department of Mathematics/ Research Scholar/ Karnataka University/ Dharwad/