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Abstract: In this paper, the expressions for third Zagreb indices and coindices of generalized transformation

graphs G and their complement graphs G are obtained.
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Introduction: Let G be a simple, undirected graph
with n vertices and m edges. let V(G) and E(G) be
the vertex set and edge set of G respectively. If u and
v are adjacent vertices of G, then the edge connecting
them will be denoted by uv. The degree of a vertex u
in G is the number of edges incident to it and is
denoted by d;(u). The complement of G, denoted by
G, is a graph having the same vertex set as G, in
which two vertices are adjacent if and only if they are
not adjacent in G. Thus, the size of G is (g) —m and
dz(v) =n—-1-d;(v) holds forall v € V(G).

For terminology not defined here we refer the reader
to [s].

In theoretical chemistry, the physico-chemical
properties of chemical compounds are often modeled
by means of molecular-graph-based structure-
descriptors, which are also referred to as topological
indices [4], [8]. The first and the second Zagreb
indices, respectively, defined

M,(G) = ZuEV(G) dg(u)? and

M3(G) = Zuvee(y 46 (W)ds(v)

are widely studied degree-based topological-indices,
that were introduced by Gutman and Trinajstic’ (3] in
1972.

In [2], G. H. Fath-Tabar introduced a new Zagreb
index of a graph G named as “third Zagreb index” and
is defined as:

M3(G) = Zuver(e) 1de (W) — de (V).

Recently, Veylaki et al. [9] introduced third Zagreb
coindex and is defined as:

M3(G) = Zuver(c) ldc(w) — de(v)].

The following earlier established results w1ll be
needed for the present considerations.

Theorem 1.1 [g] Let G be a simple graph. Then
My(G) = My(G).

Theorem 1.2 [9] Let G be a simple graph Then
M;(C) = M5(G).

Generalized transformation graphs G”ab: The
semitotal-point graph T,(G) of a graph G is a graph
whose veriex set is V(T,(6)) = V(G) U E(G) and two

~ vertices are adjacent in T,(G) if and only if (i) they

are adjacent vertices of G or (ii) one is a vertex of G
and other is an edge of G incident with it. It was
introduced by Sampathkumar and Chikkodimath [7].
Recently some new graphical transformations were

defined by Basavanagoud et al. [1], which generalizes
the concept of semitotal-point graph.

The generalized transformation graph G” is a graph
whose vertex set is V(G) UE(G), and a,B € V(G®).
The vertices a and f are adjacent in G if and only if
(*) and (*+) holds: (*) a, € V(G), a, B arc adjacent
inG ifa = + and a, B are not adjacent in G ifa = —
(#*) @ € V(G) and B € E(G), a, B are incident in G if
b =+ and a, § are not incident in G if b = —.

One can obtain the four graphical transformations of
graphs as G**, G*~, G™* and G™". The vertex v; of
G corresponding to a vertex v; of G is referred to as
point vertex and vertex e; of G ab corresponding to an
edge e; of G is referred to as line vertex.

In [1], we obtained the expressions for first and
second Zagreb indices and coindices for generalized
transformation graphs G% and their complements

G9. Now we obtain the expressions for third Zagreb
indices and coindices for generalized transformation

graphs G and their complements Geb,

Proposition 2.1 [1] Let G be a (n, m)-graph. Then the

degree of point and line vertices in G are

1. dg++(v;) =2dg(v;) and dg++(e;) = 2.

2. dg+-(v;) =mand d;+-(e;) =n— 2.

3. dg-+(v;)=n—1land d;-+(¢;) = 2.

4. dg—-(v;) = n+m—1-2d;(v;) and dg--(g;) =
n-2.

Proposition 2.2 [6] Let G be a (n,m)-graph. Then the

degree of point and line vertices in G9 are
dez(vi) = n+m—-1-2d;(v;) and d=(e) =
n+m-3.

2. de=(v)=n—-land dz=(e) =m + L.

3. de=x(v)=mand d;=(e;) =n+m-3.

4. dg=(v;) = 2d;(v;) and dz==(¢;) =m + 1.

Results: .

Theorem 3.1 Let G be a graph with n vertices and m

edges. Then M3(G**) < 2M;(G) + 4m + 2M,(G).

- Proof. Partition the edge set E(G**) into subsets E;

and. E;, where E; ={uvluv€E(G)} and E, =
{ue| the vertex u is incident to the edge e in G}.
It is easy to check that |E;| = m and|E,| = 2m.

- My(GT) = ZuveE(aH) [dg++(u) = dg++ (V)]

=Luver, ldg++ () — dg++ (V)| + Lueer, [do++ (W) -
dg++(€)]
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By Proposition 2.1, we have
=Zuveh‘, lZdG(u) - Zd(.‘ (U)I + ZueEEz |2 -
2d ()
< 2M3(6) + Buev(c da(@)(12] + 1246 (0))
My(G*+) < 2M4(G) + 4m + 2M,(G).
Theorem 3.2 Let G be a graph with n vertices and m
edges. Then
My(G**) < 2M5(G) + 2m(n — 2) + 4m* — 2M, (G).
Proof Partition the edge set E(G**
subsets E;, E, and E;, where
E, = {uv|uv € E(G)}, E; = {ue|the vertexu
is not incident to the edge e in G}and
E, ={efle,f EE(G)}. 1t is easy to check that
1E11 = (3) ~ . 1Bal = mn - 2)and By = ().
M) = 5pepiee, gl — dg()
=Zuver, 14z (u) — dem (V)] +
Tuee, 145 () — dgw ()] + Terer, 14;7w(€) —
dz= ()l
By Proposition 2.2, we have
=Yuver) IN+m—1-2dg(u) - (n+m—
1-2dc())| + Lueer, In+m—1-2dg(u) —n—
m+ 3| + Yefer, In+m-3-n-m+3|
=Y wee) | — 2dc(w) +2dg (V)| +
ZueEEz |2 - ZdG(u)l
~2M3(6) + Tuev(ey (m — dg(w)(12 -
2d6))) __
< 2M3(G) + Zuev(ey (m — dg()(I2] +
|2dg (u)])
M,(G**) < 2M5(G) + 2m(n — 2) + 4m? -
2M,(G). -
Theorem 3.3 Let G be a graph with n vertices and m
edges. Then
M3(G**) < 2M5(G) + 2m(n — 2) + 4m* — 2M, (G).
Proof The proof of the theorem follows from
Theorem 1.1 and Theorem 3.2.
Theorem 3.4 Let G be a graph with n vertices and m
edges. Then My(G*+) < 2M3(G) + 4m + 2M,(G).
Proof The proof of the theorem follows from
Theorem 1.2 and Theorem 3.1.
Theorem 3.5 Let G be a graph with n vertices and m
edges. Then M3(G*™) =m(n—2)jm —n +2|.
Proof Partition the edge set E(G*")
subsets E; and E,, where :
E, = {uvluv € E(G)} and E, = {ue|the
vertex u is not incident to the edge e
in G}: It is easy to check that |Ej|=m and
|E;| = m(n - 2).
M3(G*7) = Euveric*-) ldg+-(u) — dg+- ()]
=Xuveg, |dg+- () —dg+- (V)| +
EueeEz IdG*" - dG*‘ el
In view of Proposition 2.1, we have
=Euv651 |m —m| + ZueeEZ Im - (n—2)|
M3(G*)=m(n-2)m-n+2|

into

into

Theorem 3.6 Let G be a graph with n vertices and m
edges. Then My(G*) = 2mn —m - 2|.
Proof ~Partition the edge set E(G*7)
subsets E;, E, and E,, where
E, = {uv|uv € E(G)}, E; = {ue|the vertex
wis incident to the edge e in G} and E4
tefle.f € E(G)}. It is easy to check that |E,| = (’21) -
m, |E,| = 2m and |E;| = ("2‘)
M) = B pepe, =) - dgm=(0)]
=EuveE‘ |d0_+—'(u) - d(;T(v)l +

Tucer, ldz= (W) — dg=(e)| + Lerer, ldza=(e) —
dz=(f)I
In view of Proposition 2.2, we have

=XuveE(G) In —1— (n - l)l + EueeEz [n =1=
(Mm+ D+ Zefer, Im+1-(m+ 1)

ZEueEEZ |n -—m- 2|
My(G*) = 2m|n —m —2|.
Theorem 3.7 Let G be a graph with n vertices and m
edges. Then M5(G*™) = 2m|n —m - 2|.
Proof The proof of the theorem follows from
Theorem 1.1 and Theorem 3.6.
Theorem 3.8 Let G be a graph with n vertices and m
edges. Then _M;(E:) =mn-2)m-n+2|
Proof The proof of the theorem follows from
Theorem 1.2 and Theorem 3.5.
Theorem 3.9 Let G be a graph with n vertices and m
edges. Then M3(G™") = 2m|n - 3|.
Proof. Partition the edge set E(G™") into
subsets E; and E,, where
E, = {uv|luv € E(G)} and E, = {ue|the vertex
u is incident to the edge e in G}. It is easy to
check that |E;| = (721) —mand |E,| = 2m.
M3(G™*) = Luver-+) ldg-+ () — dg-+ ()|

=Zuver, |dg-+(W) — dg-+ (V)| +
ZueEEz |dg-+(u) - dG'* (el
From Proposition 2.1, we have
=Zuveli1 |Tl =1= (Tl - 1)' + zuceE2 In -1- 2|
M4(G™) = 2m|n - 3|.
Theorem 3.10 Let G be a graph with n vertices and m
edges. Then M3(E‘—+) =m(n - 2)|3 —n|.
Proof. Partition the edge set E (F) into subsets E,
E, and E;, where |
E, = {uv|luv € E(G)}, E; = {ue|the vertex u
is not incident to the edge e in G} and
Es ={efle.,f EE(G)}. It is easy to check that
|Ey| = m, || = m(n - 2) and |Es| = (5).
Ms(T) = yer e =) - dz=(v)]

=Zuv€E1 |dE-_-T(u) - dF(”)' +

Zueer, |dg=(w) — dg=(e)] + Derer, ldg=(e) -
dz=(f)I

From Proposition 2.2, we have

into
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=EquE, lm - ml + EueeEZ Im - (n +m-— 3)' +
Zefel;‘;, In e A b (n +m- 3)' =Eueel:'2 |3 - n'
My(G=*) = m(n - 2)|3 - n|.

Theorem 3.11 Let G be a graph with n vertices and m
edges. Then M3(G™*) = m(n - 2)|3 — n|.

Proof. The proof of the theorem follows from
Theorem 1.1 and Theorem 3.10.

Theorem 3.12 Let G be a graph with n vertices and m
edges. Then M(G~*) = 2m|n - 3|.

Proof. The proof of the theorem follows from
Theorem 1.2 and Theorem 3.9.

Theorem 3.13 Let G be a graph with n vertices and m
edges. Then

M3(G™") < 2M5(G) + m(m + 1)(n — 2) + 4m? —

2M, (G).

Proof. Partition the edge set £(G™") into subsets E,
and E;, where E; ={uvluv€E(G)} and E,=
{ue|the

vertex u isnot incident to the edge e in G}It is
easy to check that |E;| = G) —m and |E,| = m(n -
2).

M3(G™7) = Zuvere—) ldg- (W) — dg-- (V)|

=Zuvtsl;‘1 |dg--(u) — d¢-- W)+ ZueEEz ldg--(w) -
dg--(e)|
In view of Proposition 2.1, we have
=Xuver, IN+m—-1-2d;(u) - (n+m—
1=2d(v))] + Bueer, In+m —1-2dg(u) - (n -
2)|
< 2M3(6) + Zuevey (m — dg(u))(Im +
1]+ IZdG(u_)_Q
My(G™7) < 2M3(C) + m(m + 1)(n - 2)
+4m? - 2M,(G).
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