On Contra Pre Generalized Pre Regular Weakly Continuous Functions In Topological Spaces

Vivekananda Dembre¹, Sandeep.NPatil²

¹Assistant Professor, Dept of Mathematics ²Assistant Professor, Dept of Civil Engineering ¹Sanjay Ghodawat University, Kolhapur. ²Sanjay Ghodawat Polytechnic,Kolhapur.

Abstract- In this paper we introduce and investigate some classes of functions called contra-pgprw-continuous functions. We get several characterizations and some of their properties. Also we investigate its relationship with other types of functions.

Keywords- Contra pgprw-continuous,Pgprw-closed sets,Pgprw-open sets.

I. INTRODUCTION

In 1996, Dontchev[1] presented a new notion of continuous function called contra-continuity. This notion is a stronger form of LC-Continuity. In 2015, Wali and Vivekananda Dembre[2] introduced pgprw-closed set in topological spaces. Wali and Vivekananda Dembre[3] introduced pgprw-continuous maps and pgprw-irresolute maps in topological spaces. The purpose of this paper is to define a new class of continuous functions called Contra-pgprw continuous functions and investigate their relationships to other functions.

II. PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A , Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space (X, T) is called

(i) Generalized closed set(briefly g-closed) [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii)Regular generalized closed set(briefly rg-closed)[5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

(iii) A pre generalized pre regular ω eakly closed set(briefly pgpr ω -closed set)[2] if pCl(A) \subseteq U whenever A \subseteq U and U is rg α open in (X,^T).

The complements of the above mentioned closed sets are their respective open sets.

Definiton 2.2: A map $f:(X, {^{T}}) \xrightarrow{} {^{T}} (\sigma)$) is called (i) Pgprw-continuous function [6]if $f^{-1}(v)$ is pgprw closed in

(X, T) for every closed V in (Y, σ)

(ii) Pgprw-irresolutemap[3]if $f^{-1}(v)$ is pgprw closed in (X, \mathcal{I}) for every pgprw-closed V in (Y, σ)

(iii)Pgprw-closed map[7] if $f^{-1}(v)$ is pgprw closed in (X, T) for every closed V in (Y, σ)

(iv)Pgprw-open map[7] if $f^{-1}(v)$ is pgprw closed in (X, \mathcal{T}) for every closed V in (Y, σ)

Definition 2.4:[1]A map $f:(X, ^{\mathcal{T}}) \longrightarrow (Y, \sigma)$ is called contra continuous function if $f^{-1}(v)$ is closed in $(X, ^{\mathcal{T}})$ for every every closed V in (Y, σ) .

Theorem 2.5:[2](i)Every closed set is pgprw-closed set.

III. ONCONTRA PGPRW-CONTINUOUS FUNCTION

Definition 3.1: A function f: $(X, ^T) \rightarrow (Y, \sigma)$ is called contra pgprw-continuous function if $f^1(V)$ is Pgprw-closed set in X for each open set V in Y.

Example 3.2: Let $X=Y=\{a,b,c\}$ with topologies $T=\{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \emptyset, \{b,c\}\}$. Let f: $X \rightarrow Y$ be a map defined by identity map. Clearly f is contra pgprw-continuous map.

Theorem 3.3: Every contra-continuous function is contra pgprw-continuous function.

Page | 807

IJSART - Volume 3 Issue 12 – DECEMBER 2017

Proof: The proof follows from the fact that every closed set is pgprw-closed set[Theorem 2.5(i)]

Remark 3.4: The converse of the above theorem need not be true as seen from the following example.

Example 3.5: Consider $X=Y=\{a,b,c\}$ with topologies $^{T}=\{X, \overset{\emptyset}{\longrightarrow}, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \overset{\emptyset}{\longrightarrow}, \{b,c\}$. Let f: $X \rightarrow Y$ be a map defined by identity map. Clearly f is contra pgprw-continuous function but not contra-continuous function since $f^{-1}(\{a,c\}) = \{a,c\}$ which is not closed in X.

Theorem 3.6: If a function f: $X \rightarrow Y$ is contra pgprwcontinuous function, then f is contra-continuous function.

Proof: Let V be an open set in Y. Since f is contra pgprwcontinuous function, $f^{-1}(V)$ is closed in X. Hence f is contracontinuous function.

Remark 3.7: The concept of pgprw-continuity and contra pgprw-continuity is independent as shown in the following examples.

Example 3.8 : Let $X=Y=\{a,b,c\}$ with topologies $\mathbb{T}_{\{x,\emptyset,\{a\},\{b\},\{a,b\}\}}$ and

 $\sigma = \{Y, \emptyset, \{b,c\}\}$. Let f: X \rightarrow Y be a map defined by identity map. Clearly f is contra pgprw-continuous but not pgprw-continuous since f⁻¹(a) is not pgprw closed in X where{a}is closed in Y.

Example 3.9 : Let $X=Y=\{a,b,c\}$ with topologies $T=\{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \emptyset, \{a,b\}\}$. Let f: $X \rightarrow Y$ be identity map. Clearly f is pgprw-continuous function but not contra pgprw-continuous function $f^{-1}\{(a,b)\} = \{a,b\}$ is not pgprw-closed in X where $\{a,b\}$ is open in Y.

Remark 3.10: The composition of two contra pgprwcontinuous functions need not be contra pgprw-continuous as seen from the following example.

Example 3.11:Consider X=Y=Z= $\{a,b,c\}$ with topologies $^{T} = \{X, \phi, \{a\}, \{b,c\}\}$

and $\sigma = \{Y, \phi, \{b,c\}\} \& \mu = \{Z, \phi, \{a\}\}$. Define f: $(X, \tau)(Y, \sigma)$ and g: $(Y, \sigma)(Z, \mu)$ be the identity map. Then f & g are contra pgprw-continuous function butg of : (X, τ) (Z, μ) is not contra pgprw-continuous map since (gof)⁻¹(b)= {b} in X is not pgprw closed in X. **Theorem 3.12:** If f: $(X, \tau) \to (Y, \sigma)$ is contra pgprwcontinuous map and g: $Y \to Z$ is a continuous function, then gof: $X \to Z$ is contra pgprw-continuous function.

Proof: Let V be open in Z. Since g is continuous function, $g^{-1}(V)$ is open in Y. Then $f^{-1}(g^{-1}(V))$ is pgprw-closed in X since f is contra pgprw-continuous function, Thus (gof) $f^{-1}(V)$ is pgprw-closed in X. Hence gof is contra pgprw-continuous function.

Theorem 3.13: If f: $X \to Y$ is pgprw-irresolute function and g: $Y \to Z$ is contra continuous function then gof: $X \to Z$ is contra pgprw-continuous function.

Proof: Since every contra continuous function is contra pgprw-continuous function, the proof is obvious.

Theorem 3.14: If f: $X \to Y$ is contra pgprw-continuous function then for every $x \in X$, each $F \in C(Y, f(x))$, there exists $U \in pgprwo(X,x)$ such that $f(U) \subseteq F$ (ie) For each $x \in X$, each closed subset F of Y with $f(x) \in F$, there exists a pgprw-open set U of Y such that $x \in U$ and $f(U) \in F$.

Proof: Let $f: X \to Y$ be contra pgprw-continuous function Let F be any closed set of Y and $f(x) \in F$ where $x \in X$. Then $f^{-1}(F)$ is pgprw-open in X. Also $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then U is a pgprw-open set containing x and $f(U) \in F$.

Theorem 3.15: Let (X, \mathcal{T}) be a pgprw-connected space (Y, σ) be any topological space. If $X \to Y$ is surjective and contra pgprw-continuous function then Y is not a discrete space.

Proof: Suppose Y is discrete space. Let A be any proper nonempty subset of Y. Then A is both open and closed in Y. Since f is contra pgprw-continuous function, $f^{-1}(A)$ is both pgprwopen and pgprw-closed in X. Since X is pgprw-connected, the only subset of Y which are both pgprw-open and pgprw-closed

are X and \mathcal{P} . Hence $f^{-1}(A) = X$. Then it contradicts to the fact that f: X \rightarrow Y surjective. Hence Y is not a discrete space.

REFERENCES

- Dontchev.J."Conra-continuous functions and strongly s closed spaces", International J.Math&Math.Sci.19 (1996).303-310
- [2] 2.R.S.Wali and Vivekananda Dembre,On Pre Generalized Pre Regular Weakly Closed Sets in

IJSART - Volume 3 Issue 12 – DECEMBER 2017

Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.

- [3] R.S.Wali and Vivekananda Dembre, On Pre Generalized Pre Regular Weakly irresolute and pgprw-Continuous functions in Topological Spaces; Asian Journal of Current Engineering and Maths 5:2 March-April (2016) 44 – 46.
- [4] N.Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [5] N.Palaniappan and K.C.Rao,Regular generalized closed Sets,Kyungpook,Math.J.33(2) (1993), 211-219.
- [6] R.S.Wali and Vivekananda Dembre On Pre Generalized Pre Regular Weakly Continuous in Topological Spaces.;Bulletin of Mathematicsand Statistics ResearchVol.4.Issue.1.2016 (January-March).
- [7] R.S.Wali and Vivekananda Dembre,On Pre Generalized closed maps and pre generalized open mapsin Topological Spaces;International Journal of Statistics and Applied Mathematics 2016; 1(1): 17-21.
- [8] R.S.Wali and Vivekananda Dembre,On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological SpacesAnnals of Pure and Applied MathematicsVol. 10, No.1, 2015;Published on 12 April 2015.