
Applied Mathematics and Nonlinear Sciences 2(1) (2017) 21–30

Applied Mathematics and Nonlinear Sciences
http://journals.up4sciences.org

(β ,α)−Connectivity Index of Graphs

B. Basavanagoud†, Veena R. Desai‡ and Shreekant Patil§.

Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, INDIA

Submission Info

Communicated by Wei Gao
Received 11th November 2016

Accepted 30th January 2017
Available online 30th January 2017

Abstract
Let Eβ (G) be the set of paths of length β in a graph G. For an integer β ≥ 1 and a real number α , the (β ,α)-connectivity
index is defined as

β χα(G) = ∑
v1v2···vβ+1∈Eβ (G)

(dG(v1)dG(v2)...dG(vβ+1))
α .

The (2,1)-connectivity index shows good correlation with acentric factor of an octane isomers. In this paper, we compute
the (2,α)-connectivity index of certain class of graphs, present the upper and lower bounds for (2,α)-connectivity index
in terms of number of vertices, number of edges and minimum vertex degree and determine the extremal graphs which
achieve the bounds. Further, we compute the (2,α)-connectivity index of line graphs of subdivision graphs of 2D-lattice,
nanotube and nanotorus of TUC4C8[p,q], tadpole graphs, wheel graphs and ladder graphs.
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AMS 2010 codes: 05C90, 05C35, 05C12

1 Introduction

Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges. As usual, n is said to be an
order and m the size of G. The subdivision graph S(G) is the graph obtained from G by replacing each edge
by a path of length 2. The line graph L(G) of G is the graph whose vertex set is E(G) in which two vertices
are adjacent if and only if they are adjacent in G. The tadpole graph Tn,k is the graph obtained by joining a
cycle of n vertices with a path of length k. The cartesian product G×H of graphs G and H has the vertex set
V (G×H) = V (G)×V (H) and (a,x)(b,y) is an edge of G×H if and only if [a = b and xy ∈ E(H)] or [x = y
and ab ∈ E(G)]. The ladder graph Ln is given by Ln = K2×Pn, where Pn is the path of length n. Let Eβ (G) be
the set of paths of length β in G. We refer to [13] for unexplained terminology and notation.
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Chemical graph theory is a branch of mathematical chemistry concerned with the study of chemical graphs.
Chemical graphs are models of molecules in which atoms are represented by vertices and chemical bonds by
edges of a graph. A graphical invariant is a number related to a graph. In other words, it is a fixed number under
graph automorphisms. In chemical graph theory, these invariants are also called the topological indices. The
first and second Zagreb indices are defined as

M1(G) = ∑
u∈V (G)

dG(u)2 = ∑
uv∈E(G)

[dG(u)+dG(v)] and M2(G) = ∑
uv∈E(G)

dG(u)dG(v)

respectively.
The connectivity index of an organic molecule whose molecular graph G is defined (see [12, 17]) as

1χα(G) = ∑
uv∈E(G)

(dG(u)dG(v))α .

For an integer β ≥ 1 and a real number α , the (β ,α)-connectivity index [14] is defined as

β
χα(G) = ∑

v1v2···vβ+1∈Eβ (G)

(dG(v1)dG(v2)...dG(vβ+1))
α . (1)

The higher connectivity indices are of great interest in molecular graph theory [15, 22] and some of their
mathematical properties have been reported in [1, 18, 19]. Chemical applications of higher connectivity indices
are the motivations for our study.

By Eq. (1), it is consistent to define (2,α)-connectivity index and (2,1)-connectivity index as

2
χα(G) = ∑

uvw∈E2(G)

(dG(u)dG(v)dG(w))α and (2)

2
χ1(G) = ∑

uvw∈E2(G)

(dG(u)dG(v)dG(w)) (3)

respectively.
The present paper is organized as follows. In Section 2, we study the chemical applicability of the (2,1)-

connectivity index. In Section 3, we compute the (2,α)-connectivity index of certain class of graphs and present
the upper and lower bounds for (2,α)-connectivity index in terms of the number of vertices, the number of edges
and the minimum vertex degree and determine the extremal graphs which achieve the bounds. In Section 4, we
compute the (2,α)-connectivity index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus
of TUC4C8[p,q], tadpole graphs, wheel graphs and ladder graphs.

2 On the chemical applicability of the (2,1)-connectivity index

Octane isomers have become an important set of organic molecules to test the applicability of various topo-
logical parameters in quantitative structure-property relationships (QSPR) and quantitative structure-activity re-
lationships (QSAR). The productivity of (2,1)-connectivity index was tested using a dataset of octane isomers,
found at http://www.moleculardescriptors.eu/dataset.htm. It is shown that the (2,1)-connectivity index has a
good correlation with the acentric factor of an octane isomers.

The dataset of octane isomers (first two columns of Table 1) are taken from
http://www.moleculardescriptors.eu/dataset.htm and the last column of Table 1 is computed from the definition
of (2,1)-connectivity index.

The linear regression model for the acentric factor of Table 1 is obtained by using the least squares fitting
procedure as implemented in R−software [24]. The fitted model is

AcentFac = 0.4547376−0.00161252χ1
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Table 1 Experimental values of the acentric factor and corresponding values of 2χ1 of octane isomers.

Alkane AcentFac 2χ1

n-octane 0.397898 40
2-methyl-heptane 0.377916 47
3-methyl-heptane 0.371002 54
4-methyl-heptane 0.371504 56

3-ethyl-hexane 0.362472 64
2,2-dimethyl-hexane 0.339426 64
2,3-dimethyl-hexane 0.348247 70
2,4-dimethyl-hexane 0.344223 63
2,5-dimethyl-hexane 0.35683 54
3,3-dimethyl-hexane 0.322596 80
3,4-dimethyl-hexane 0.340345 78

2-methyl-3-ethyl-pentane 0.332433 81
3-methyl-3-ethyl-pentane 0.306899 96
2,2,3-trimethyl-pentane 0.300816 96
2,2,4-trimethyl-pentane 0.30537 75
2,3,3-trimethyl-pentane 0.293177 103
2,3,4-trimethyl-pentane 0.317422 87

2,2,3,3-tetramethylbutane 0.255294 120

Fig. 1 Scatter diagram of AcentFac on 2χ1, superimposed by the fitted regression line.

The values of (2,1)-connectivity index against values of acentric factor of an octane isomers are plotted in
Fig. 1. The absolute value of correlation coefficient between AcentFac and 2χ1 is 0.95802 and with standard
error 0.01047.
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3 Estimating the (2,α)-connectivity index of graphs

We start by stating the following observation, which is needed to prove our main results.

Remark 1. For a graph G on m edges, the number of paths of length 2 in G is −m+ 1
2 M1(G).

Theorem 1. For a path Pn on n > 4 vertices,

2χα(Pn) = 2 ·4α +8α · (n−4)

Proof. For a path Pn on n > 4 vertices each vertex is of degree either 1 or 2. Based on the degree of vertices on
the path of length 2 in Pn we can partition E2(Pn). In Pn, path (1,2,2) appears 2 times and path (2,2,2) appears
(n−4) times. Hence by Eq. (2) we get the required result.

Theorem 2. For a wheel graph Wn+1,

2χα(Wn+1) = 27α ·n+(9n)α · n2+3n
2 .

Proof. For a wheel Wn+1 on n≥ 3 vertices each vertex is of degree either 3 or n. Based on the degree of vertices
on the path of length 2 in Wn+1 we can partition E2(Wn+1). In Wn+1, path (3,3,3) appears n times and path
(3,3,n) appears n2+3n

2 times. Therefore by Eq. (2), we get the required result.

Theorem 3. For a complete bipartite graph Kr,s,

2χα(Kr,s) =
r2α+1·sα+1·(s−1)

2 + rα+1·s2α+1·(r−1)
2

Proof. For a complete bipartite graph Kr,s on r+ s vertices each vertex is of degree either r or s. Based on the
degree of vertices on the path of length 2 in Kr,s we can partition E2(Kr,s). In Kr,s, path (r,s,r) appears rs(s−1)

2

times and path (s,r,s) appears sr(r−1)
2 times. Hence by Eq. (2), we get the required result.

Theorem 4. Let G be a r-regular graph on n vertices,

2χα(G) = r3α+1 · n(r−1)
2 .

Proof. Since G is a r-regular graph, the path (r,r,r) appears nr(r−1)
2 times in G. Therefore by Eq. (2), we get the

required result.

Corollary 5. For a cycle Cn, 2χα(Cn) = 8α ·n.

Corollary 6. For a complete graph Kn, 2χα(Kn) =
n(n−2)·(n−1)3α+1

2 .

Lemma 7 (c.f. [3]). Let G be a graph with n vertices and m edges. Then

M1(G) ≤ m(
2m

n−1
+n−2). (4)

Lemma 8 (c.f. [4]). Let G be a graph with n vertices and m edges, m > 0. Then the equality

M1(G) = m(
2m

n−1
+n−2)

holds if and only if G is isomorphic to star graph Sn or Kn or Kn−1∪K1.

Theorem 9. Let G be a graph with n vertices and m edges. Then

2
χ1(G) ≤ (n−1)3α ·m(

m
n−1

+
n−4

2
) (5)

the equality holds if and only if G is isomorphic to Kn.
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Proof.

2
χα(G) = ∑

uvw∈E2(G)

[dG(u)dG(v)dG(w)]α

≤ ∑
uvw∈E2(G)

(n−1)3α (6)

= (n−1)3α(−m+
1
2

M1(G))

≤ (n−1)3α(−m+
1
2

m(
2m

n−1
+n−2)) (7)

= (n−1)3α ·m(
m

n−1
+

n−4
2

).

Relations (6) and (7) were obtained by taking into account for each vertices v ∈ V (G), we have dG(v) ≤ n− 1
and Eq. (4), respectively.
Suppose that equality in (5) holds. Then inequalities (6) and (7) become equalities. From (6) we conclude that
for every vertex v, dG(v) = n−1. Then from Eq. (7) and Lemma 8 it follows that G is a complete graph.
Conversely, let G be a complete graph. Then it is easily verified that equality holds in (5).

Lemma 10 (c.f. [4]). Let G be a graph with n vertices and m edges. Then

M1(G) ≥ 2m(2p+1)− pn(1+ p), where p = b2m
n
c,

and the equality holds if and only if the difference of the degrees of any two vertices of graph G is at most one.

Theorem 11. Let G be a graph with n vertices, m edges and the minimum vertex degree δ . Then

2
χα(G) ≥ δ 3α

2
(4mp− pn(p+1)), where p = b2m

n
c, (8)

and the equality holds if and only if G is a regular graph.

Proof.

2
χα(G) = ∑

uvw∈E2(G)

[dG(u)dG(v)dG(w)]α

≥ ∑
uvw∈E2(G)

δ
3α (9)

= δ
3α(−m+

1
2

M1(G))

≥ δ
3α(−m+

1
2
(2m(2p+1)− pn(1+ p))) (10)

=
δ 3α

2
(4mp− pn(p+1)).

Relations (9) and (10) were obtained by taking into accounting for each vertices v ∈ V (G), we have dG(v) ≥ δ

and Eq. (8), respectively.
Suppose now that equality in (8) holds. Then inequalities (9) and (10) become equalities. From (9) we conclude
that for every vertex v, dG(v) = δ . Then from Eq. (10) and Lemma 10 it follows that G is a regular graph.
Conversely, let G be a regular graph. Then it is easily verified that equality holds in (8).
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4 Computing the (2,α)-connectivity index of line graphs of subdivision graphs of some families of graphs

In [16], Nadeem et al. obtained expressions for certain topological indices of the line graphs of subdivision
graphs of 2D-lattice, nanotube, and nanotorus of TUC4C8[p,q], where p and q denote the number of squares
in a row and the number of rows of squares, respectively in 2D-lattice, nanotube and nanotorus as shown in
Figure 2 (a), (b) and (c)respectively. The numbers of vertices and edges of 2D-lattice, nanotube and nanotorus
of TUC4C8[p,q] are given in Table 2. Readers interested in other information on nanostructures can be referred
to [2, 5–9, 11].

Fig. 2 (a) 2D-lattice of TUC4C8[4,3]; (b) TUC4C8[4,3] nanotube; (c) TUC4C8[4,3] nanotorus.

Table 2 Number of vertices and edges.

Graph Number of vertices Number of edges
2D-lattice of TUC4C8[p,q] 4pq 6pq− p−q

TUC4C8[p,q] nanotube 4pq 6pq− p
TUC4C8[p,q] nanotorus 4pq 6pq

In [20, 21], Ranjini et al. presented explicit formula for computing the Shultz index and Zagreb indices of
the subdivision graphs of the tadpole, wheel and ladder graphs. In 2015, Su and Xu [23] calculated the general
sum-connectivity index and coindex of the L(S(Tn,k)), L(S(Wn)) and L(S(Ln)). In [11], Nadeem et al. derived
some exact formulas for ABC4 and GA5 indices of the line graphs of the tadpole, wheel and ladder graphs by
using the notion of subdivision.

Table 3 Partition of paths of length 2 of the graph X .

(dX(u),dX(v),dX(w))
where uvw ∈ E2(X) (2,2,2) (2,2,3) (3,3,2) (3,3,3)

Number of paths
of length 2 in X 8 4(p+q−2) 8(p+q−2) (36pq−26p−26q+16)

Lemma 12 (c.f. [16]). Let X be the line graph of the subdivision graph of 2D-lattice of TUC4C8[p,q]. Then
M1(X)=108pq−38p−38q.

Theorem 13. Let X be the line graph of the subdivision graph of 2D-lattice of TUC4C8[p,q]. Then 2χα(X)=8α+1+
4(12α +2 ·18α)(p+q−2)+27α(36pq−26p−26q+16).

Proof. The subdivision graph of 2D-lattice of TUC4C8[p,q] and the graph X are shown in Fig.3 (a) and (b),

http://www.up4sciences.org
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Fig. 3 (a) Subdivision graph of 2D-lattice of TUC4C8[4,3]; (b) Line graph of the subdivision graph of 2D-lattice of
TUC4C8[4,3].

respectively. In X there are total 2(6pq− p−q) vertices each vertex is of degree either 2 or 3 and 18pq−5p−5q
edges. From Observation 1 and Lemma 12, we get 36pq− 14p− 14q of paths of length 2 in X . Based on the
degree of vertices on the path of length 2 in X we can partition E2(X) as shown in Table 3. Apply Eq. (2) to
Table 3 and get the required result.

Fig. 4 (a) Subdivision graph of TUC4C8[4,3] of nanotube; (b) line graph of the subdivision graph of TUC4C8[4,3] of
nanotube.

Table 4 Partition of paths of length 2 of the graph Y .

(dY (u),dY (v),dY (w)) where uvw ∈ E2(Y ) (2,2,3) (3,3,2) (3,3,3)
Number of paths of length 2 in Y 4p 8p (36pq−26p)

Lemma 14 (c.f. [16]). Let Y be the line graph of the subdivision graph of TUC4C8[p,q] nanotube. Then
M1(Y )=108pq−38p.

Theorem 15. Let Y be the line graph of the subdivision graph of TUC4C8[p,q] nanotube. Then 2χα(Y ) =
12α ·4p+18α ·8p+27α(36pq−26p).

Proof. The subdivision graph of TUC4C8[p,q] nanotube and the graph Y are shown in Fig.4 (a) and (b), respec-
tively. In Y there are total 12pq−2p vertices in which each vertex is of degree either 2 or 3 and 18pq−5p edges.
From Remark 1 and Lemma 14, we get 36pq− 14p number of paths of length 2 in Y . Based on the degree of
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vertices on the paths of length 2 in Y we can partition E2(Y ) as shown in Table 4. Apply Eq. (2) to Table 4 and
get the required result.

Fig. 5 (a) Subdivision graph of TUC4C8[4,3] of nanotorus; (b) Line graph of the subdivision graph of TUC4C8[4,3] of
nanotorus.

Theorem 16. Let Z be the line graph of the subdivision graph of TUC4C8[p,q] nanotorus. Then 2χα(Z) =
27α ·36pq.

Proof. The subdivision graph of TUC4C8[p,q] nanotorus and the graph Z are shown in Fig.5 (a) and (b), respec-
tively. Since Z is a 3-regular graph with 12pq vertices and 18pq edges. Therefore by Theorem 4, we get the
required result.

Table 5 Partition of paths of length 2 of the graph A = L(S(Tn,k)) for k = 1

(dA(u),dA(v),dA(w)) where uvw ∈ E2(A) (1,3,3) (2,3,3) (2,2,3) (3,3,3) (2,2,2)
Number of paths of length 2 in A 2 4 2 3 2n−4

Table 6 Partition of paths of length 2 of the graph A = L(S(Tn,k)) for k > 1

(dA(u),dA(v),dA(w)) where uvw ∈ E2(A) (1,2,2) (2,3,3) (2,2,3) (3,3,3) (2,2,2)
Number of paths of length 2 in A 1 6 3 3 2n+2k−8

Lemma 17 (c.f. [20, 23]). Let A be a line graph of the subdivision graph of the tadpole graph Tn,k. Then
M1(A) = 8n+8k+12.

Theorem 18. Let A be a line graph of the subdivision graph of the tadpole graph Tn,k. Then

2χα(A)=
{

4α +18α ·6+12α ·3+27α ·3+8α · (2n+2k−8) f or k > 1.
9α +18α ·4+12α ·2+27α ·3+8α · (2n−4) f or k = 1.

Proof. First of all, we consider graph A for n ≥ 3 and k > 1. In this graph there are total 2(n+ k) vertices and
2n+2k+1 edges. From Remark 1 and Lemma 17, we get 2k+2n+5 of paths of length 2 in A. Based on the
degree of vertices on the paths of length 2 in A we can partition E2(A) as shown in Table 6. Apply Eq. (2) to
Table 6 and get the required result. By similar arguments we can obtain the expression of 2χα(A) for k = 1 from
Table 5.

Lemma 19 (c.f. [20]). Let B be a line graph of the subdivision graph of the wheel graph Wn+1. Then M1(B) =
n3 +27n.

http://www.up4sciences.org


(β ,α)−Connectivity Index of Graphs 29

Table 7 Partition of paths of length 2 of the graph B.

(dB(u),dB(v),dB(w)) where uvw ∈ E2(B) (3,3,3) (3,3,n) (3,n,n) (n,n,n)
Number of paths of length 2 in B 7n 2n n(n−1) n(n−1)(n−2)

2

Theorem 20. Let B be a line graph of the subdivision graph of the wheel graph Wn+1. Then 2χα(B) = 7n ·27α +

nα+1 ·9α ·2+3α ·n2α+1(n−1)+n3α+1 · (n−1)(n−2)
2 .

Proof. The graph L(S(Wn+1)) contains 4(n+ 1) vertices and n2+9n
2 edges. From Remark 1 and Lemma 19, we

get n3−n2+18n
2 number of paths of length 2 in B. Based on the degree of vertices on the paths of length 2 in B we

can partition E2(B) as shown in Table 7. Apply Eq. (2) to Table 7 and get the required result.

Table 8 Partition of paths of length 2 of the graph C.

(dC(u),dC(v),dC(w)) where uvw ∈ E2(C) (2,2,2) (2,2,3) (2,3,3) (3,3,3)
Number of paths of length 2 in C 4 4 8 18n−44

Lemma 21 (c.f. [20, 23]). Let C be a line graph of subdivision graph of a ladder graph with order n. Then
M1(Z) = 54n−76.

Theorem 22. Let C be a line graph of subdivision graph of a ladder graph with order n. Then 2χα(C) =
8α ·4+12α ·4+18α ·8+27α(18n−44).

Proof. The graph L(S(Ln)) contains 6n− 4 vertices and 18n−20
2 edges. From Remark 1 and Lemma 21, we get

18n−28 number of paths of length 2 in C. Based on the degree of vertices on the paths of length 2 in C we can
partition E2(C) as shown in Table 8. Apply Eq. (2) to Table 8 and get the required result.
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