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ABSTRACT 
 

Given a graph � with vertex set �(�), edge set �(�) and cutvertex set �(�), let � be the complement, 
�(�) the line graph and �(�) the cutvertex graph of �. Let �� be the graph with �(��)= �(�) and without 

edges, �� the complete graph with vertex set �(�), �� = � and �� = �. Let ��(�) (��(�)) be the graph 
whose vertices can be put in one to one correspondence with the set of edges and cutvertices of � in such a 

way that two vertices of ��(�) (����.,��(�)) are adjacent if and only if one corresponds to an edge of � and 
other to a cutvertex and they are incident (resp., nonincident). Given three variables �,�,� ∈ {0,1,+ ,− }, the 
generalized ���-line cut transformation graph ����(�) of � is graph with vertex set �(����(�))= �(�)∪

�(�) and edge set �(����(�))= �(�(�))� ∪ �(�(�))� ∪ �(�), where � = ��(�) if � = + , � = ��(�) 
if � = − , � is the graph with �(�)=�(�)∪ �(�) and without edges if � = 0 and � is the complete 
bipartite graph with parts �(�) and �(�) if � = 1. The graph ����(�) generalizes the definition of the 
graph ��� when � = 0 and {�,�}⊆ {+ ,− }, which is given in [1]. In this paper, we investigate some basic 
properties such as order, size, degree of a vertex and connectedness of generalized ���-line cut 
transformation graphs.  
 
Keywords: Cutvertex; line graph; generalized ���-line cut transformation graphs. 
 
2010 mathematics subject classification: 05C12.  
 

1 Introduction 
 
By a graph �=(�,�), we mean a finite, undirected graph without loops or multiple edges. For any graph �, 
�(�)= {��,��,...,��; � ≥ 2}, �(�)= {��,��,...,��; � ≥ 1}, �(�)= {��,��,...,��; � ≥ 1} and �(�)=
{��,��,...,��; � ≥ 2} denote the vertex set, edge set, cutvertex set and block set of �, respectively. 
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The degree of a vertex �� in � is the number of edges incident to �� and it is denoted by �� = ���(��). A 
cutvertex of a connected graph � is the one whose removal increases the number of components. A 
nonseparable graph is connected, nontrivial and has no cutvertices. A block of a graph � is a maximal 
nonseparable subgraph. A block is called endblock of a graph if it contains exactly one cutvertex of �. The 
line graph �(�) of � is the graph whose vertex set is �(�) in which two vertices are adjacent if and only if 
they are adjacent in �. The jump graph �(�) [2] of � is the graph whose vertex set is �(�) in which two 
vertices are adjacent if and only if they are nonadjacent in �. If � = {��,��,… ,��; � ≥ 2} is a block of �, 

then we say that vertex �� and block � are incident with each other, as �� and � are and so on. If a block is 
incident with cutvertices ��,��,...,�� , � ≥ 2, we say that �� and ��  are coadjacent where � ≠ � and 1 ≤ �, 

� ≤ �. The cutvertex graph �(�) [3] of a graph � is the graph whose vertex set corresponds to the 
cutvertices of � and in which two vertices of �(�) are adjacent if the cutvertices of � to which they 

correspond lie on a common block. Let ��(�) (��(�)) be the graph whose vertices can be put in one to one 
correspondence with the set of edges and cutvertices of � in such a way that two vertices of ��(�) 

(����.,��(�)) are adjacent if and only if one corresponds to an edge of � and other to a cutvertex and they 

are incident (resp., nonincident). Here we call ��(�) as line-cut incident graph and ��(�) as partial 
complementary line-cut incident graph. Let ��(�) the degree of the vertex � in �(�). In this paper the 
considered graph must have at least one cutvertex. For graph theoretic terminology, we refer to [4,5].  
 

2 Generalized ��� −  Line Cut Transformation Graphs  
 
Let � = (�,�) be a graph, and let �, � be two elements of �(�)∪ �(�). The associativity of � and � is +  
if they are adjacent or incident in �, otherwise is − . Let �� be a 2-permutation of the set {+ ,− }. We say that 
� and � correspond to the first term � of �� if both � and � are in �(�) and � and � correspond to the 
second term � of �� if one of � and � is in �(�) and the other is in �(�). The line-cut transformation 
graph ��� of � is defined on the vertex set �(�)∪ �(�). Two vertices � and � of ��� are joined by an 
edge if and only if these associativity in � is consistent with corresponding term of ��. Since there are four 
distinct 2-permutations of {+ ,− }, we obtain four line-cut transformations of � namely ���, ���, ��� and 
���. This concept is introduced in [1]. In the following definition we more generalize the construction of 
line-cut transformation graph ��� of �. For this purpose we need the following notations. 
 
For a graph � = (�,�), let �� be the graph with �(��)= �(�) and with no edges, �� the complete graph 

with �(��)= �(�), �� = � and �� = �. In this paper, we consider certain graph transformations 
depending on parameters �,�,� ∈ {0,1,+ ,− }. These operations induce functions ����: � → � and ����(�) 
will be called the generalized ���-line cut transformation of � which is defined as follows. 
 
Definition: Given a graph � with edge set �(�) and cutvertex set �(�) and three variables �,�,� ∈
{0,1,+ ,− }, the generalized ���-line cut transformation graph ����(�) of � is the graph with vertex set 
�(����(�))= �(�)∪ �(�) and edge set �(����(�))= �(�(�))� ∪ �(�(�))� ∪ �(�) where  
 

1. � = ��(�) if � = + .  

2. � = ��(�) if � = − .  
3. � is the graph with �(�)= �(�)∪ �(�) and without edges if � = 0.  
4. � is the complete bipartite graph with parts �(�) and �(�) if � = 1.  

 

Thus we obtain 64 generalized ���- line cut transformation graphs. Here note that ����(�)= ���, 

����(�)= ���, ����(�)= ���, ����(�)= ���, ����(�)= ��(�) and ����(�)= ��(�). 
 

A graph � and all its 64 generalized ���-line cut transformation graphs are shown in Figs. 1-4. The vertex 
�� ′ of ����(�) corresponding to an edge �� of � will be referred as edge point. The vertex ��′ of ����(�) 
corresponding to a cutvertex �� of � will be referred as cutvertex point. In generalized ���-line cut 
transformation graphs the edge points are denoted by dark circles and the cutvertex points are denoted by 
light circles.  
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Fig. 1. Graph � and generalized ���-line cut transformation graphs when � = � 
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Fig. 2. Generalized ���-line cut transformation graphs when � = � 
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Fig. 3. Generalized ���-line cut transformation graphs when � = + . 



Fig. 4. Generalized 
  
Remark 2.1  
 

(i) �(�) is an induced subgraph of 
(ii) �(�) is an induced subgraph of
(iii) ��  is an induced subgraph of
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(i) �(�) is an induced subgraph of 
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Remark 2.3  
 

(i) ��(�) is a spanning subgraph of ����(�). 

(ii) ��(�) is a spanning subgraph of ����(�). 
(iii) ��,� is a spanning subgraph of ����(�).  

 
Theorem 2.1:  [4] If � is connected, then �(�) is connected.  
 

Theorem 2.2:  [6] Let � be a graph of size � ≥ 1. Then �(�) is connected if and only if � contains no edge 
that is adjacent to every other edges of � unless � = �� or ��. 
 

Theorem 2.3:  ([4], page 23) A graph � is connected if and only if for any partition of �(�) into two 
subsets �� and ��, there is an edge of � joining a vertex of �� with a vertex of ��.  
  

3 Order, Size and Degree of Vertices of ����(�) 
 
Proposition 3.1: Let � be a nontrivial connected (�,�)-graph with vertex set �(�)= {��,��,...,��}, edge 
set �(�)= {��,��,...,��}, cutvertex set �(�)= {��,��,...,��; � ≥ 1} and block set 
�(�)= {��,��,...,��; � ≥ 2}. Suppose that the vertex �� of � has degree ��, ��  is the degree of the vertex 
�� in ��(�) and �(��) is the number of cutvertices of a connected graph � which are vertices of the block ��. 
Then we have the following.  
 

�((�(�))�)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0 ��  � = 0
�(���)

�
��  � = 1

− � +
�

�
∑  �

��� ��
� ��  � = +

�(���)

�
−

�

�
∑  �

��� ��
� ��  � = −

� 

 

�((�(�))�)=

⎩
⎪⎪
⎨

⎪⎪
⎧

0 ��  � = 0
�(���)

�
��  � = 1

∑  �
���

�(��)[�(��)��]

�
��  � = +

�(���)

�
− ∑  �

���
�(��)[�(��)��]

�
��  � = −

�  

 

Theorem 3.2: Let � be a nontrivial connected (�,�)-graph with vertex set �(�)={��,��,...,��}, edge set 
�(�)={��,��,...,��}, cutvertex set �(�)={��,��,...,��} and block set �(�)={��,��,...,��}. Suppose that 
the vertex �� of � has degree ��, �� is the degree of the vertex �� in ��(�) and �(��) is the number of 
cutvertices of a connected graph � which are the vertices of the block ��. Then   
 

(i) The order of ����(�)= |�(����(�))| = � + � = � + 1 + ∑  �
��� (�(��)− 1).  

 

(ii) The size of ����(�)= |�(����(�))|=

⎩
⎪
⎨

⎪
⎧

|�((�(�))�)| + |�((�(�))�)| ��  � = 0.

|�((�(�))�)| + |�((�(�))�)| + �� ��  � = 1.

|�((�(�))�)| + |�((�(�))�)| + ∑  �
��� �� ��  � = + .

|�((�(�))�)| + |�((�(�))�)| + �� − ∑  �
��� �� ��  � = − .

�  

Proof.  (i) It is shown in [7] that if �(��) is the number of cutvertices of a connected graph � which are 
vertices of the block �� , then the number of cutvertices of � is given by 1 + ∑  �

��� (�(��)− 1). On the other 
hand, by definition of ����(�), the number of vertices of ����(�) is the sum of the number of edges and 
cutvertices of �. Thus |�(����(�))| = � + �, where � = 1 + ∑  �

��� (�(��)− 1).  
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(ii) The proof of the theorem follows from the Definition of ����(�) and Proposition 3.1.  
 
The proofs of the following results are straightforward.  
 
Theorem 3.3: Let � be an (�,�)-graph with � cutvertices. Then the degree of the edge point �′ (� = �� in 
�) and the cutvertex point �′ (� in �) in ����(�), when � = 0, are   
 

1.   �����(�)(�′)=

⎩
⎪
⎨

⎪
⎧

0 ��  � = 0  ���  � ∈ {0,1,+ ,− }

� − 1 ��  � = 1  ���  � ∈ {0,1,+ ,− }

��(�)+ ��(�)− 2 ��  � = +   ���  � ∈ {0,1,+ ,− }

� + 1 − ��(�)− ��(�) ��  � = −   ���  � ∈ {0,1,+ ,− }

� 

 

2.   �����(�)(�′)=

⎩
⎪
⎨

⎪
⎧

0 ��  � = 0  ���  � ∈ {0,1,+ ,− }

� − 1 ��  � = 1  ���  � ∈ {0,1,+ ,− }

��(�) ��  � = +   ���  � ∈ {0,1,+ ,− }

� − 1 − ��(�) ��  � = −   ���  � ∈ {0,1,+ ,− }.

�  

 
Corollary 3.4: Let � be an (�,�)-graph with � cutvertices. Then the degree of the edge point �′ and the 
cutvertex point �′ in ����(�), when � = 1, are �����(�)(�′)= �����(�)(�′)+ � and �����(�)(�′)=

�����(�)(�′)+ �.  

  
Corollary 3.5: Let � be an (�,�)-graph. Suppose that the degree of the vertex �� in ��(�) is �� and �� is the 
degree of the vertex �� in ��(�). Then the degree of the edge point ��′ (�� = �� in �) and the cutvertex point 
�� ′ (�� in �) in ����(�), when � = + , are �����(�)(��′)= �����(�)(�� ′)+ �� and �����(�)(��′)=

�����(�)(�� ′)+ ��.  

 

Corollary 3.6: Let � be an (�,�)-graph. Suppose that the degree of the vertex �� in ��(�) is �� and �� is the 
degree of the vertex �� in ��(�). Then the degree of the edge point ��′ (�� = �� in �) and the cutvertex point 
�� ′ (�� in �) in ����(�), when � = − , are �����(�)(�� ′)= �����(�)(��′)+ �� and �����(�)(��′)=

�����(�)(�� ′)+ � − ��.  

  

4  Connectedness of ����(�) 
 
The first theorem follows from the definition of ����(�).  
 
Theorem 4.1:  For any graph �, ����(�) is disconnected.  
  
Theorem 4.2: For any graph �, ����(�) is connected.  
 
Proof. The proof of the theorem follows from the fact that the complete bipartite graph ��,� is a connected 
spanning subgraph of ����(�) with partite sets �(�) and �(�) .  
 

When � = + , we have the following theorems.  
 
Theorem 4.3: For any connected graph �, ����(�) is connected if and only if every edge is incident with at 
least one cutvertex in � and each cutvertex in a nonendblock is adjacent with at least one cutvertex in the 
same nonendblock.   
 

Proof. Suppose that every edge is incident with at least one cutvertex in � and each cutvertex in a 
nonendblock is adjacent with at least one cutvertex in the same block. Then each edge point is adjacent with 
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at least one cutvertex point and each cutvertex point is adjacent with at least two edge points in ����(�). 
Hence there exist a path from one vertex to any other vertex of ����(�). Therefore ����(�) is connected. 
 
Conversely, if � contains an edge � is nonincident with cutvertex, then ����(�)= ����(� − �)∪ �� is 
disconnected, a contradiction. Let � be a cutvertex in a nonendblock. Consider the partition {�� = {�′}∪
{�′: � and � are incident in � with � ∈ �(�)},�� = �(����(�))\��} of �(����(�)). It follows from 
Theorem 2.3 that there exist �′ in �� and �′ in �� such that (�′,�′)∈ �(����(�)), where clearly � ∈ �(�) 
and � ∈ �(�). Therefore, it follows from the definition of ����(�) that � and � are incident and so � and 
� are adjacent in �.  
  
Theorem 4.4: For any graph �, ����(�) is connected.  
 
Proof. The proof of the theorem follows from the facts that �� is subgraph of ����(�) with vertex set �(�) 
and each cutvertex is incident with at least one edge in �.  
  
Theorem 4.5: For any graph �, ����(�) is connected if and only if every edge is incident with at least one 
cutvertex in �.  
 
Proof. Suppose that every edge is incident with at least one cutvertex in �. Then ��  is a subgraph of 
����(�) with vertex set �(�) and each edge point is adjacent with at least one cutvertex point in ����(�). 
Therefore ����(�) is connected. 
 
Conversely, if � contains an edge � is nonincident with cutvertex, then ����(�)= ����(� − �)∪ �� is 
disconnected, a contradiction.  
 
Theorem 4.6: ����(�) is connected if and only if each component of � has at least one cutvertex.  
 
Proof. Suppose that each component of � has at least one cutvertex. Then ��  is an induced subgraph of 
����(�) with vertex set �(�) and line graph of each component of � are induced subgraph of ����(�) 
with vertex sets as respective edge set of components of �. By definition of ����(�), at least one edge point 
of line graph of each component of � in ����(�) is adjacent with one cutvertex point. Therefore ����(�) is 
connected. 
 
Conversely, if one of the component say �� of � is block, then ����(�)= ����(� − �(��))∪ �(��) is 
disconnected, a contradiction.  
 
Theorem 4.7: For any graph �, ����(�) is connected.  
 
Proof. By definition of ����(�), ��  is an induced subgraph of ����(�) with vertex set �(�) and each 
cutvertex point is adjacent to at least one edge point in ����(�). If � is disconnected, then result is obvious. 
Suppose � is connected. Now it is sufficient to show that every pair of edge point and cutvertex point are 
connected. We consider the following cases: 
 

Case 1. If the edge is incident with a cutvertex in �, then result is obvious. 
 
Case 2. If the edge � is nonincident with a cutvertex � in �, then there exists an edge �� which is 
nonincident with cutvertex � and is adjacent to � in �. Therefore �′ and �′ are connected through an edge 
point �′ in ����(�). 

 
Thus, every pair of vertices in ����(�) are connected. Hence ����(�) is connected. 
 
Theorem 4.8: [1]  For any graph �, ����(�) is connected if and only if � is connected. 
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Theorem 4.9: For any connected graph �, ����(�) is connected if and only if every edge is incident with at 
least one cutvertex in �.  
 

Proof. Suppose that every edge is incident with at least one cutvertex in �. Since �(�) is a connected 
subgraph of ����(�) with vertex set �(�) (because � is connected) and each edge point is adjacent with at 
least one cutvertex point in ����(�), it follows that ����(�) is connected. 
 

Conversely, let � be an edge in � and consider the partition {�� = {�′},�� = �(����(�))\��} of 
�(����(�)). It follows from Theorem 2.3 that there exist � in �� such that (�′,�′)∈ �(����(�)), where 
clearly � ∈ �(�) by definition of ����(�). Therefore, it follows from the definition of ����(�) that � and 
� are incident.  
 

Theorem 4.10: For any connected graph �, ����(�) is connected if and only if � satisfies the following 
conditions:   
 

(i) Each edge is incident with at least one cutvertex.  
(ii) Each coadjacent cutvertex in a block � is adjacent to cutvertex or each coadjacent cutvertex in a 

block � is nonadjacent to cutvertex which is not in �.  
 

Proof. Suppose that each edge is incident with at least one cutvertex and each coadjacent cutvertex in a 
block � is either adjacent to cutvertex or nonadjacent to cutvertex which is not in �. Then each edge point is 
adjacent with at least one cutvertex point in ����(�). Therefore it is sufficient to prove every pair of 
cutvertex points are connected. Let �′� and �′� be any two cutvertex points in ����(�). Then have the 
following three cases: 
 

Case 1. If �� and �� are adjacent cutvertices by an edge �, then �′� and �′� are connected through an 
edge point �′. 
 

Case 2. If �� and �� are nonadjacent cutvertices but noncoadjacent, then �′� and �′� are connected. 
 

Case 3. If �� and �� are coadjacent cutvertices, then there exist a cutvertex �� which is nonadjacent �� 
and adjacent with ��. Therefore �′� and �′� are connected in ����(�). 

 

Therefore, every pair of vertices in ���� are connected. Hence ����(�) is connected. 
 

Conversely, suppose ����(�) is connected. If � contains an edge � is nonincident with cutvetex, then 
����(�)= ����(� − �)∪ �� is disconnected, a contradiction. If two coadjacent cutvertices are adjacent or 
nonadjacent with a cutvertex, then ����(�) contains two components, a contradiction.  
 

Theorem 4.11: ����(�) is connected if and only if � is connected. 
 
Proof. It follows from Theorem 4.8 that ����(�) is connected and since ����(�) is an spanning subgraph 
of ����(�) it follows that ����(�) is connected. 
 

Conversely, suppose ����(�) is connected. If � is disconnected graph with at least two components �� and 
��, then ����(�)= ����(��)∪ ����(��) is disconnected, a contradiction.  
  

Theorem 4.12: For a given graph � with at least one cutvertex, ����(�) is connected. 
 

Proof. Suppose that graph � with at least one cutvertex. We consider the following cases: 
 

Case 1. If � contains no edge that is adjacent to every other edge of �, then by Theorem 2.2 and 
Remark 2.1 (ii), �(�) is a connected induced subgraph of ����(�). Also each cutvertex point is 
adjacent to at least one edge point because every cutvertex is incident with at least one edge in �. Hence 
����(�) is connected. 
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Case 2. If � contains an edge � that is adjacent to every other edge of �, then � is incident with at least 
one cutvertex �. And ����(� − �) is a connected induced subgraph of ����(�) and �′,�′,�′� is a path 
in ����(�) (see Fig. 5), where edge �� is incident with �, and each cutvertex point is adjacent to at least 
one edge in ����(�). Hence ����(�) is connected.  

 

 
 

Fig.  5. Graph � and its ����(�) 
 
Theorem 4.13: For any connected graph �, ����(�) is connected.  
 
Proof. Suppose that � is connected. Then by Theorem 2.1 and Remark 2.1 (i), �(�) is a connected induced 
subgraph of ����(�) and also each cutvertex point is adjacent to at least one edge point because every 
cutvertex is incident with at least one edge in �. Hence ����(�) is connected.  
 
Theorem 4.14: For a disconnected graph �, ����(�) is connected if and only if every component of � 
contains at least one cutvertex. 
  

Proof. Suppose that every component of � contains at least one cutvertex. Then �(�) is a connected induced 
subgraph of ����(�). Since the line graph of each component of � is connected in ����(�) and also each 
cutvertex point is adjacent to at least one edge point because every cutvertex is incident with at least one 
edge in �, then ����(�) is connected. 
 
Conversely, assume that there exists a component of � which is a block. Then ����(�) contains at least two 
components, a contradiction.  
 
When � = − , we have the following theorems.  
 

Theorem 4.15: For any graph � ≠ ��,�, ����(�) is connected.  
 

Proof. Since ��, with vertex set �(�), is a subgraph of ����(�) and each cutvertex is nonincident with at 
least one edge in � (because � ≠ ��,�), it follows that ����(�) is connected.  
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Theorem 4.16: ����(�) is connected if and only if each edge is nonincident with at least one cutvertex in �. 
Proof. Suppose that every edge is nonincident with at least one cutvertex in �. Since ��  is a subgraph of 
����(�) and by hypothesis, each edge point is adjacent with at least one cutvertex point in ����(�), then 
����(�) is connected. 
 
Conversely, suppose ����(�) is connected. Assume there is an edge � which is nonincident with every 
cutvertex in �. Then ����(�)= ����(� − �)∪ �� is disconnected, a contradiction.  
 
Theorem 4.17: For any graph � ∉ {��,�,��,� ∪ ��}, where �� has no cutvertex, ����(�) is connected.  
 
Proof. Since �� , with vertex set �(�), is an induced subgraph of ����(�) and either edge is nonincident 
with at least one cutvertex or adjacent to an edge which is is nonincident with at least one cutvertex in � 
(because � ∉ {��,�,��,� ∪ ��}), it follows that ����(�) is connected.  
 
Theorem 4.18: ����(�) is connected if and only if no edge which is adjacent to every other edges of � is 
incident with all cutvertices.  
 
 Proof. Suppose that no edge which is adjacent to every other edges of � is incident with all cutvertices and 
since ��  is an induced subgraph of ����(�), it follows that ����(�) is connected. 
 
Conversely, if � contains an edge � which is adjacent to every other edges of � is incident with all 
cutvertices, then ����(�)= ����(� − �)∪ �� is disconnected.  
 
Theorem 4.19: For any connected graph � with two cutvertices, ����(�) is connected if and only if � 
contains an edge which is nonincident with both the cutvertices.  
 
Proof. Suppose that � contains an edge � which is nonincident with both cutvertices �� and ��. Then �′� and 
�′� are connected through an edge point �′ in ����(�) and other edge points are adjacent with either �′� or 
�′�. Therefore ����(�) is connected. 
 
Conversely, Suppose that � and � are the two cutvertices of �. Consider the partition {�� = {�′}∪ {�′: � and 
� are incident in � with � ∈ �(�)}, �� = �(����(�))\��} of �(����(�)). It follows from Theorem 2.3 that 
there exist �′ in �� and �′ in �� such that (�′,�′)∈ �(����(�)), where clearly � ∈ �(�) and � = � (by 
definition of ����(�) and by choice of {��,��}). Therefore, it follows from the definition of ����(�) that � 
is nonincident with both cutvertices.  
  
Theorem 4.20: For any connected graph � with at least three cutvertices, ����(�) is connected.  
 
Proof. Since each edge is nonincident with at least one cutvertex in �. Then each edge-point is adjacent with 
at least one cutvertex point in ����(�). Therefore it is sufficient to prove that every pair of cutvertex points 
are connected. Consider �′� and �′� any two cutvertex points in ����(�). Then we have the following two 
cases. 
 

Case 1. If there exist an edge � which is nonadjacent with �� and ��, then �′� and �′� are connected 
through of the edge point �′. 
 

Case 2. If there exists no an edge which is nonadjacent with �� and ��, then there exist two edges ��, �� 
and one cutvertex �� in which �� is nonadjacent with both �� and �� and �� is nonadjacent with both �� 
and �� such that �′�,�′�,�′�,�′�,�′� is a path in ����(�). 

 

Therefore, every pair of vertices in ���� are connected. Hence ����(�) is connected.  
 
Theorem 4.21: For any connected graph �, ����(�) is connected if and only if every edge is nonincident 
with at least one cutvertex in �.  
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Proof. Suppose that every edge is nonincident with at least one cutvertex in �. Since � is connected. Then 
�(�) is connected and by hypothesis each edge point is adjacent with at least one cutvertex point in 
����(�). Therefore ����(�) is connected. 
 
Conversely, suppose that ����(�) is connected. Assume there is an edge � which is nonincident with 
cutvertex in �. Then ����(�)= ����(� − �)∪ �� is disconnected, a contradiction.  
  
Theorem 4.22: [1]  For a given graph �, with � ≥ 2 and block set �(�)= {��,… ,��; � ≥ 2}, ����(�) is 
connected if and only if � satisfies following conditions:   
 

(i) � ≠ ��,��
  

(ii) � ≠ ��,��
∪ ��,��

  

(iii) � ≠ ��,��
∪ (⋃  �

��� ��).  
  
Theorem 4.23: For a given graph �, with � ≥ 2 and block set �(�)= {��,… ,��; � ≥ 2}, ����(�) is 
connected if and only if � satisfies following conditions:   
 

(i) � ≠ ��,��
  

(ii) � ≠ ��,��
∪ ��,��

  

(iii) � ≠ ��,��
∪ (⋃  �

��� ��).  
 
Proof. It follows from Theorem 4.22, that ����(�) is a connected spanning subgraph of ����(�) which 
implies that ����(�) is connected. 
 
Conversely, (i) If � = ��,��

, then ����(�)= ����(�)= ���
∪ �� is disconnected, a contradiction. 

 
(ii)  If � = ��,��

∪ ��,��
, then ����(�)= ����(�)= ����� ∪ ����� is disconnected, a contradiction. 

(iii) If � = ��,��
∪ (⋃  �

��� ��), then ����(�)= ����(�)= ���
∪ [(⋃  �

��� �(��))+ ��] is 
disconnected, a contradiction.  

  
Theorem 4.24: For any connected graph � with two cutvertices, ����(�) is connected if and only if � 
contains an edge which is nonincident with both cutvertices.  
 
Proof. Since ����(�)= ����(�) (because the cutvertices lie to the same block) the result follows from 
Theorem 4.19.  
 
Theorem 4.25: For any connected graph � with at least three cutvertices, ����(�) is connected.  
 
Proof. Suppose that � is a connected graph with at least three cutvertices. Then ���� is a connected 
spanning subgraph of ����(�), Therefore the proof follows from the Theorem 4.20.  
 
Theorem 4.26: For a given graph �, with block set �(�)= {��,… ,��; � ≥ 2}, ����(�) is connected if and 
only if � satisfies the following conditions:   
 

(i) � ≠ ��,��
  

(ii) � ≠ ��,��
∪ (⋃  �

��� ��).  
 
Proof. Suppose a graph � satisfies conditions (i) and (ii). We prove the result by following cases. 
 
Case 1. If � is connected, then we have the following subcases. 
Subcase 1.1. If � is a block, then ����(�)= �(�). Therefore by Theorem 2.1, ����(�) is connected. 
Subcase 1.2. If � has at least one cutvertex, then by Theorem 2.1 and Remark 2.1 (i), �(�) is a connected 
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induced subgraph of ����(�) and also by condition (i), each cutvertex point is adjacent to at least one edge 
point because every cutvertex is nonincident with at least one edge in �. Hence ����(�) is connected. 
 

Case 2. If � is disconnected with ��, ��,… ,��, � ≥ 2 components. By condition (ii), �(�), �(��), 
�(��),…,�(��) are connected induced subgraphs of ����(�). Also at least one edge point of �(��) is 
adjacent with at least one cutvertex point in ����(�). 
 
Conversely, (i) If � = ��,��

, then ����(�)= ���
∪ �� is disconnected, a contradiction. 

 
(ii) If � = ��,��

∪ (⋃  �
��� ��), then ����(�)= ���

∪ [(⋃  �
��� �(��))+ ��] is disconnected, a contradiction. 

 
Theorem 4.27 For a given graph � with at least one cutvertex, ����(�) is connected if and only if � has no 
edge that is adjacent to all other edges.  
 
Proof. Suppose that � contains no edge that is adjacent to every other edge of �, then by Theorem 2.2 and 
Remark 2.1 (ii), �(�) is connected induced subgraph of ����(�). Also each cutvertex point is adjacent to at 
least one edge point because every cutvertex is nonincident with at least one edge in �. Hence ����(�) is 
connected. 
 
Conversely, assume that � contains an edge � that is adjacent to every other edge of �, then � is incident 
with one or two cutvertices. And ����(�)= ����(� − �)∪ ��, a contradiction.  
 

5 Conclusion 
 
In this paper, we have introduced 64 generalized ���-line cut transformation graphs and we studied order, 
size, degree of a vertex and connectedness of these new graphs. The study of diameter, traversability, 
planarity, chromatic number, domination number, spectra, energy and topological indices of 64 generalized 
���-line cut transformation graphs can be interesting. In [8,9], the authors gave the characterization of 
����(�) and ����(�), respectively. Characterization of remaining 62 generalized ���-line cut 
transformation graphs can be quite challenging. (i.e., to prove that: A graph � is a generalized ���- line cut 
transformation graph if and only if it is isomorphic to the generalized ���-line cut transformation graph 
����(�) of some graph �.)  
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