Asian Journal of Mathematics and Computer Research

193): 101-115, 2017
ISSN: 2395-4205 (P), ISSN: 2395-4213 (0)

ON THE GENERALIZED xyz-LINE CUT
TRANSFORMATION GRAPHS

B. BASAVANAGOUD!", KEERTHI G. MIRAJKAR?, B. POOJA?

AND V. R. DESAT'
lDepar'[men‘[ of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India.
2Depar‘[ment of Mathematics, Karnatak Arts College, Karnatak University, Dharwad - 580 001,
Karnataka, India.

AUTHORS’ CONTRIBUTIONS
This work was carried out in collaboration between all authors. All authors read and approved the final

manuscript.
Received: 16" June 2017
Accepted: 3" August 2017 — -
Published: 10" August 2017 | Original Research Article |
ABSTRACT

Given a graph G with vertex set V(G), edge set E(G) and cutvertex set W (G), let G be the complement,
L(G) the line graph and C(G) the cutvertex graph of G. Let G° be the graph with V(G°) = V(G) and without
edges, G! the complete graph with vertex set V(G), G* = G and G~ = G. Let le(G) (E(G)) be the graph
whose vertices can be put in one to one correspondence with the set of edges and cutvertices of G in such a
way that two vertices of lc(G) (resp.,lc(G)) are adjacent if and only if one corresponds to an edge of G and
other to a cutvertex and they are incident (resp., nonincident). Given three variables x,y, z € {0,1, +, —}, the
generalized xyz-line cut transformation graph R**(G) of G is graph with vertex set V(R**(G)) = E(G) U
W(G) and edge set E(R*%(G)) = E(L(G))* UE(C(G))? UE(H), where H = Ic(G) if z = +, H = Ic(G)
if z=—, H is the graph with V(H)=E(G) UW(G) and without edges if z= 0 and H is the complete
bipartite graph with parts E(G) and W (G) if z = 1. The graph R**(G) generalizes the definition of the
graph G** when y = 0 and {x, z} € {4+, —}, which is given in [1]. In this paper, we investigate some basic
properties such as order, size, degree of a vertex and connectedness of generalized xyz-line cut
transformation graphs.

Keywords: Cutvertex; line graph; generalized xyz-line cut transformation graphs.

2010 mathematics subject classification: 05C12.

1 Introduction

By a graph G=(V, E), we mean a finite, undirected graph without loops or multiple edges. For any graph G,
V(G) ={v1,vy,..., vy =2}, E(G) ={ey,ey,...,ep;m =1}, W(G) = {cy,¢y,..., ;7 = 1} and U(G) =
{B1,B;,...,Bg; s = 2} denote the vertex set, edge set, cutvertex set and block set of G, respectively.

*Corresponding author: Email: b.basavanagoud@gmail.com;
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The degree of a vertex v; in G is the number of edges incident to v; and it is denoted by d; = deg(v;). A
cutvertex of a connected graph G is the one whose removal increases the number of components. A
nonseparable graph is connected, nontrivial and has no cutvertices. A block of a graph G is a maximal
nonseparable subgraph. A block is called endblock of a graph if it contains exactly one cutvertex of G. The
line graph L(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if
they are adjacent in G. The jump graph J(G) [2] of G is the graph whose vertex set is E(G) in which two
vertices are adjacent if and only if they are nonadjacent in G. If B = {uy, Uy, ..., up; p = 2} is a block of G,
then we say that vertex u, and block B are incident with each other, as u, and B are and so on. If a block is
incident with cutvertices ¢;,Cy,..., ¢, T = 2, we say that ¢; and ¢; are coadjacent where i # j and 1 <,
j <r. The cutvertex graph C(G) [3] of a graph G is the graph whose vertex set corresponds to the
cutvertices of G and in which two vertices of C(G) are adjacent if the cutvertices of G to which they
correspond lie on a common block. Let lc(G) (Ic(G)) be the graph whose vertices can be put in one to one
correspondence with the set of edges and cutvertices of G in such a way that two vertices of lc(G)

(resp.,lc(G)) are adjacent if and only if one corresponds to an edge of G and other to a cutvertex and they

are incident (resp., nonincident). Here we call lc(G) as line-cut incident graph and lc(G) as partial
complementary line-cut incident graph. Let D;(c) the degree of the vertex ¢ in C(G). In this paper the
considered graph must have at least one cutvertex. For graph theoretic terminology, we refer to [4,5].

2 Generalized xyz — Line Cut Transformation Graphs

Let G = (V,E) be a graph, and let a, § be two elements of E(G) U W(G). The associativity of a and f is +
if they are adjacent or incident in G, otherwise is —. Let xz be a 2-permutation of the set {+, —}. We say that
a and [ correspond to the first term x of xz if both a and £ are in E(G) and a and f correspond to the
second term z of xz if one of @ and £ is in E(G) and the other is in W (G). The line-cut transformation
graph G** of G is defined on the vertex set E(G) U W(G). Two vertices a and 8 of G** are joined by an
edge if and only if these associativity in G is consistent with corresponding term of xz. Since there are four
distinct 2-permutations of {4+, —}, we obtain four line-cut transformations of G namely G**, G*~, G™* and
G~~. This concept is introduced in [1]. In the following definition we more generalize the construction of
line-cut transformation graph G** of G. For this purpose we need the following notations.

For a graph G = (V, E), let G° be the graph with V(G°) = V(G) and with no edges, G* the complete graph
with V(G') =V(G), G* =G and G~ = G. In this paper, we consider certain graph transformations
depending on parameters x,y,z € {0,1, 4+, —}. These operations induce functions R**: G — G and R*¥*(G)
will be called the generalized xyz-line cut transformation of G which is defined as follows.

Definition: Given a graph G with edge set E(G) and cutvertex set W(G) and three variables x,y,z €
{0,1, +, -}, the generalized xyz-line cut transformation graph R*¥*(G) of G is the graph with vertex set
V(R*™?(G)) = E(G) U W (G) and edge set E(R*™?(G)) = E(L(G))* U E(C(G))” U E(H) where

H =1c(G)ifz =+.

H=1Ic(G)ifz=—.

H is the graph with V(H) = E(G) U W(G) and without edges if z = 0.
H is the complete bipartite graph with parts E(G) and W (G) if z = 1.

Eal e

Thus we obtain 64 generalized xyz- line cut transformation graphs. Here note that RT°*(G) = G*¥,
R*=(G) = G*~, R"*(6) = G~*, R"°=(G) = G—~, R°*(G) = lc(G) and R°*~(G) = Ic(G).

A graph G and all its 64 generalized xyz-line cut transformation graphs are shown in Figs. 1-4. The vertex
e;' of R*¥%(G) corresponding to an edge e; of G will be referred as edge point. The vertex c¢;' of R*Y*(G)
corresponding to a cutvertex ¢; of G will be referred as cutvertex point. In generalized xyz-line cut
transformation graphs the edge points are denoted by dark circles and the cutvertex points are denoted by
light circles.
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Fig. 1. Graph G and generalized xyz-line cut transformation graphs when z = 0
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Fig. 2. Generalized xyz-line cut transformation graphs when z = 1
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Fig. 3. Generalized xyz-line cut transformation graphs when z = +.
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Fig. 4. Generalized xyz-line cut transformation graphs when z = —.
Remark 2.1

(1) L(G) is an induced subgraph of R*Y%(G).
(i) J(G) is an induced subgraph of R™Y?(G).
(iii) K, is an induced subgraph of R¥?(G).

Remark 2.2

(1) C(G) is an induced subgraph of R***(G).
(i1) C(G) is an induced subgraph of R*™%(G).
(iii) K, is an induced subgraph of R*'%(G).
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Remark 2.3

(1) lc(G) is a spanning subgraph of R*Y*(G).
(ii) Ic(G) is a spanning subgraph of R~ (G).
(iii) Ky - is a spanning subgraph of R**(G).

Theorem 2.1: /4] If G is connected, then L(G) is connected.

Theorem 2.2: [6] Let G be a graph of size m = 1. Then J(G) is connected if and only if G contains no edge
that is adjacent to every other edges of G unless G = K, or Cy.

Theorem 2.3: (/4], page 23) A graph G is connected if and only if for any partition of V(G) into two
subsets Vy and V,, there is an edge of G joining a vertex of Vy with a vertex of V,.

3 Order, Size and Degree of Vertices of R**(G)

Proposition 3.1: Let G be a nontrivial connected (n, m)-graph with vertex set V(G) = {v4,v,,..., 0}, edge
set E(G)={ejey...,enm}, cutvertex set W(G)={c,cy...,cr;r =1} and block  set
U(G) = {By,B,,...,Bs; s = 2}. Suppose that the vertex v; of G has degree d;, L; is the degree of the vertex
¢; in lc(G) and C(B;) is the number of cutvertices of a connected graph G which are vertices of the block B;.
Then we have the following.

0 if x=0

—m(ﬂzl_l) if x=1

E(LG)H={-m+ 3, d?  if x=+

mim+1) 1gp 2 . _
— 2 3 = di Uf x=-

0 if y=0

r(rz—l) if y= 1
C(By[Cc(Bj)— .

E((C(6)")=1 x5, ool if y=+
-1 cBlcBy-1 .

% -¥5, % if y=—

Theorem 3.2: Let G be a nontrivial connected (n, m)-graph with vertex set V(G)={vy,v,,..., 1}, edge set
E(G)={eq, ey,-..,en}, cutvertex set W(G)={cy,C5,...,c,} and block set U(G)={By, B,, ..., Bs}. Suppose that
the vertex v; of G has degree d;, L; is the degree of the vertex c; in lc(G) and C(B;) is the number of
cutvertices of a connected graph G which are the vertices of the block B;. Then

(i) The order of RVZ(G) = [V(R™Z(G))| =m+r=m+1+ Y5, (C(B) — 1).

|E((LG)D)| + [E(C(G)N)] if z=0.
IECLG)D| + [E(CG))] +mr if z=1
(ii) The size of R™*(G) = |E(R™*(G))|=1 [E((L(G)M)] + [E((C(GNN] + K= L if z=+.

IECLG)N)I+ [EC@GN +mr —Yiy Ly if z=—.

Proof. (i) It is shown in [7] that if C(B;) is the number of cutvertices of a connected graph G which are
vertices of the block B;, then the number of cutvertices of G is given by 1+ Y-, (C(B;) — 1). On the other
hand, by definition of R*¥#(G), the number of vertices of R*¥?(G) is the sum of the number of edges and
cutvertices of G. Thus |[V(R*?(G))| =m+r,wherer =14 );_, (C(B;) — 1).
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(ii) The proof of the theorem follows from the Definition of R*¥*(G) and Proposition 3.1.
The proofs of the following results are straightforward.

Theorem 3.3: Let G be an (n, m)-graph with r cutvertices. Then the degree of the edge point e' (e = uv in
G) and the cutvertex point ¢’ (¢ in G) in R*Y*(G), when z = 0, are

0 if x=0and y€{0,1,+,-}
m-—1 if x=1and y€ {01+, -}
L dpryogy(e) = {de(w) +dg(v) — 2 if x=+ and y € {0,1,+,-}

m+1—-d;(u)—ds(w) if x=—and y € {0,1,+,-}

0 if y=0and x€{0,1,+,-}
r—1 if y=1and x €{0,1,+,-}
2. dgxyogy(c) = 4 Dg(c) if y=+ and x € {0,1,+,-}

r—1—Dg(c) if y=— and x€{0,1,+,—}.

Corollary 3.4: Let G be an (n,m)-graph with r cutvertices. Then the degree of the edge point e' and the
cutvertex point ¢’ in R*™?(G), when z =1, are dpxyig(€") = dgxyoy () +1 and dpxyig(c) =
deyO(G)(C') + m.

Corollary 3.5: Let G be an (n, m)-graph. Suppose that the degree of the vertex e; in lc(G) is 1; and L; is the
degree of the vertex c; in lc(G). Then the degree of the edge point e;' (e; = uv in G) and the cutvertex point
¢' (¢ in G) in R™*(G), when z =+, are dpxy+gy(e;) = dpxyogy(e;) + 1 and dpxy+)(¢;) =
dgxyoy(€i) + Ly

Corollary 3.6: Let G be an (n, m)-graph. Suppose that the degree of the vertex e; in lc(G) is p; and L; is the
degree of the vertex c; in lc(G). Then the degree of the edge point e;' (e; = uv in G) and the cutvertex point
¢i' (¢ in G) in R¥™*(G), when z=—, are dpxy-(5 (&) = deyo(G)(ei') +p; and dgxy-g)(¢;) =
deyO(G)(Ci’) +m— Li'

4 Connectedness of R*Y?(G)

The first theorem follows from the definition of R*Y°(G).
Theorem 4.1: For any graph G, R*Y°(G) is disconnected.
Theorem 4.2: For any graph G, R*1(G) is connected.

Proof. The proof of the theorem follows from the fact that the complete bipartite graph K, ,- is a connected
spanning subgraph of R*Y1(G) with partite sets E(G) and W (G) .

When z = +, we have the following theorems.

Theorem 4.3: For any connected graph G, R°°* (G) is connected if and only if every edge is incident with at
least one cutvertex in G and each cutvertex in a nonendblock is adjacent with at least one cutvertex in the
same nonendblock.

Proof. Suppose that every edge is incident with at least one cutvertex in G and each cutvertex in a
nonendblock is adjacent with at least one cutvertex in the same block. Then each edge point is adjacent with
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at least one cutvertex point and each cutvertex point is adjacent with at least two edge points in R%%*(G).
Hence there exist a path from one vertex to any other vertex of R°°*(G). Therefore R°°*(G) is connected.

Conversely, if G contains an edge e is nonincident with cutvertex, then R°°*(G) = R%°*(G —e) UK, is
disconnected, a contradiction. Let ¢ be a cutvertex in a nonendblock. Consider the partition {V; = {c'} U
{a':c and a are incident in G with a € E(G)},V, = V(R*(G))\V;} of V(R°*(G)). It follows from
Theorem 2.3 that there exist e’ in V; and w' in V, such that (e/,w") € E(R%°*(G)), where clearly e € E(G)
and w € W(G). Therefore, it follows from the definition of R°°*(G) that e and w are incident and so ¢ and
w are adjacent in G.

Theorem 4.4: For any graph G, RY*(G) is connected.

Proof. The proof of the theorem follows from the facts that K, is subgraph of R1Y*(G) with vertex set E(G)
and each cutvertex is incident with at least one edge in G.

Theorem 4.5: For any graph G, R (G) is connected if and only if every edge is incident with at least one
cutvertex in G.

Proof. Suppose that every edge is incident with at least one cutvertex in G. Then K, is a subgraph of
R (G) with vertex set W (G) and each edge point is adjacent with at least one cutvertex point in R%1*(G).
Therefore R°**(G) is connected.

Conversely, if G contains an edge e is nonincident with cutvertex, then R°**(G) = R°1*(G —e) UK, is
disconnected, a contradiction.

Theorem 4.6: R*1*(G) is connected if and only if each component of G has at least one cutvertex.

Proof. Suppose that each component of G has at least one cutvertex. Then K, is an induced subgraph of
R**(G) with vertex set W (G) and line graph of each component of G are induced subgraph of R*1*(G)
with vertex sets as respective edge set of components of G. By definition of R¥1*(G), at least one edge point
of line graph of each component of G in R*1* () is adjacent with one cutvertex point. Therefore R*1*(G) is
connected.

Conversely, if one of the component say G, of G is block, then R*1*(G) = R**(G — E(G;)) U L(G,) is
disconnected, a contradiction.

Theorem 4.7: For any graph G, R~ (G) is connected.
Proof. By definition of R™1*(G), K, is an induced subgraph of R™1*(G) with vertex set W(G) and each
cutvertex point is adjacent to at least one edge point in R™*(G). If G is disconnected, then result is obvious.
Suppose G is connected. Now it is sufficient to show that every pair of edge point and cutvertex point are
connected. We consider the following cases:
Case 1. If the edge is incident with a cutvertex in G, then result is obvious.
Case 2. If the edge e is nonincident with a cutvertex c¢ in G, then there exists an edge e; which is
nonincident with cutvertex ¢ and is adjacent to e in G. Therefore e’ and ¢’ are connected through an edge
point e’ in R™1+(G).

Thus, every pair of vertices in R™1*(G) are connected. Hence R™1*(G) is connected.

Theorem 4.8: /1] For any graph G, R*°*(G) is connected if and only if G is connected.
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Theorem 4.9: For any connected graph G, R°**(G) is connected if and only if every edge is incident with at
least one cutvertex in G.

Proof. Suppose that every edge is incident with at least one cutvertex in G. Since C(G) is a connected
subgraph of R%**(G) with vertex set W (G) (because G is connected) and each edge point is adjacent with at
least one cutvertex point in R°** (), it follows that R%**(G) is connected.

Conversely, let e be an edge in G and consider the partition {V; = {e'},V, = V(R°**(G))\V;} of
V(R%**(G)). It follows from Theorem 2.3 that there exist w in V, such that (¢’,w’) € E(R°**(G)), where
clearly w € W (G) by definition of R%**(G). Therefore, it follows from the definition of R°**(G) that e and
w are incident.

Theorem 4.10: For any connected graph G, R°~*(G) is connected if and only if G satisfies the following
conditions:

(i) Each edge is incident with at least one cutvertex.
(i) Each coadjacent cutvertex in a block B is adjacent to cutvertex or each coadjacent cutvertex in a
block B is nonadjacent to cutvertex which is not in B.

Proof. Suppose that each edge is incident with at least one cutvertex and each coadjacent cutvertex in a
block B is either adjacent to cutvertex or nonadjacent to cutvertex which is not in B. Then each edge point is
adjacent with at least one cutvertex point in R°*(G). Therefore it is sufficient to prove every pair of
cutvertex points are connected. Let ¢’; and ¢’, be any two cutvertex points in R%™*(G). Then have the
following three cases:

Case 1. If ¢; and ¢, are adjacent cutvertices by an edge e, then ¢’; and ¢’, are connected through an
edge point e’.

Case 2. If ¢; and c, are nonadjacent cutvertices but noncoadjacent, then ¢’y and ¢’, are connected.

Case 3. If ¢; and ¢, are coadjacent cutvertices, then there exist a cutvertex c; which is nonadjacent c;
and adjacent with c,. Therefore c'; and ¢’, are connected in R°~7(G).

Therefore, every pair of vertices in R%~* are connected. Hence R%~*(G) is connected.

Conversely, suppose R®™*(G) is connected. If G contains an edge e is nonincident with cutvetex, then
RO™*(G) = R°*(G — e) U K, is disconnected, a contradiction. If two coadjacent cutvertices are adjacent or
nonadjacent with a cutvertex, then R~ (G) contains two components, a contradiction.

Theorem 4.11: R***(G) is connected if and only if G is connected.

Proof. 1t follows from Theorem 4.8 that R¥%*(G) is connected and since R*°*(G) is an spanning subgraph
of R***(G) it follows that R***(G) is connected.

Conversely, suppose R***(G) is connected. If G is disconnected graph with at least two components G, and
G,, then R***(G) = R***(G,) U R**(G,) is disconnected, a contradiction.

Theorem 4.12: For a given graph G with at least one cutvertex, R™Y*(G) is connected.
Proof. Suppose that graph G with at least one cutvertex. We consider the following cases:

Case 1. If G contains no edge that is adjacent to every other edge of G, then by Theorem 2.2 and
Remark 2.1 (ii), J(G) is a connected induced subgraph of R™¥*(G). Also each cutvertex point is
adjacent to at least one edge point because every cutvertex is incident with at least one edge in G. Hence
R7Y*(G) is connected.
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Case 2. If G contains an edge e that is adjacent to every other edge of G, then e is incident with at least
one cutvertex c. And R™¥* (G — e) is a connected induced subgraph of R™7*(G) and €', ¢, e'; is a path
in R™Y*(G) (see Fig. 5), where edge e, is incident with ¢, and each cutvertex point is adjacent to at least
one edge in R™Y*(G). Hence R™Y*(G) is connected.

Fig. 5. Graph G and its R77*(G)

Theorem 4.13: For any connected graph G, Rt~ (G) is connected.

Proof. Suppose that G is connected. Then by Theorem 2.1 and Remark 2.1 (i), L(G) is a connected induced
subgraph of R*~*(G) and also each cutvertex point is adjacent to at least one edge point because every
cutvertex is incident with at least one edge in G. Hence R*~*(G) is connected.

Theorem 4.14: For a disconnected graph G, R*~*(G) is connected if and only if every component of G
contains at least one cutvertex.

Proof. Suppose that every component of G contains at least one cutvertex. Then € (G) is a connected induced
subgraph of R*~*(G). Since the line graph of each component of G is connected in R*~*(G) and also each
cutvertex point is adjacent to at least one edge point because every cutvertex is incident with at least one
edge in G, then R*~*(G) is connected.

Conversely, assume that there exists a component of G which is a block. Then R*~*(G) contains at least two
components, a contradiction.

When z = —, we have the following theorems.
Theorem 4.15: For any graph G # K, ,,, R™Y~(G) is connected.

Proof. Since K,,, with vertex set E(G), is a subgraph of R1Y~(G) and each cutvertex is nonincident with at
least one edge in G (because G # Kj ,,), it follows that R*¥~(G) is connected.
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Theorem 4.16: R°1~(G) is connected if and only if each edge is nonincident with at least one cutvertex in G.
Proof. Suppose that every edge is nonincident with at least one cutvertex in G. Since K, is a subgraph of
R%1~(G) and by hypothesis, each edge point is adjacent with at least one cutvertex point in R°27(G), then
R%1~(G) is connected.

Conversely, suppose R~ (G) is connected. Assume there is an edge e which is nonincident with every
cutvertex in G. Then R°1~(G) = R~ (G — e) U K; is disconnected, a contradiction.

Theorem 4.17: For any graph G & {Ky n, Ky s U G}, where G, has no cutvertex, R**~(G) is connected.

Proof. Since K,., with vertex set W (G), is an induced subgraph of R*1~(G) and either edge is nonincident
with at least one cutvertex or adjacent to an edge which is is nonincident with at least one cutvertex in G
(because G & {K; 5, K1 4 U G1}), it follows that R*1~(G) is connected.

Theorem 4.18: R~ (G) is connected if and only if no edge which is adjacent to every other edges of G is
incident with all cutvertices.

Proof. Suppose that no edge which is adjacent to every other edges of G is incident with all cutvertices and
since K, is an induced subgraph of R™17(G), it follows that R~ (G) is connected.

Conversely, if G contains an edge e which is adjacent to every other edges of G is incident with all
cutvertices, then R™17(G) = R™7(G — e) U K; is disconnected.

Theorem 4.19: For any connected graph G with two cutvertices, R°°(G) is connected if and only if G
contains an edge which is nonincident with both the cutvertices.

Proof. Suppose that G contains an edge e which is nonincident with both cutvertices c¢; and c,. Then ¢’; and
¢, are connected through an edge point e’ in R°®~(G) and other edge points are adjacent with either ¢'; or
c',. Therefore R%°~(G) is connected.

Conversely, Suppose that u and v are the two cutvertices of G. Consider the partition {V; = {u'} U {a": u and
a are incident in G with a € E(G)}, V, = V(R (6))\V;} of V(R (G)). It follows from Theorem 2.3 that
there exist w' in V; and k' in V, such that (w', k") € E(R°°7(G)), where clearly w € E(G) and k = v (by
definition of R%°~(G) and by choice of {V;, V,}). Therefore, it follows from the definition of R°°~(G) that w
is nonincident with both cutvertices.

Theorem 4.20: For any connected graph G with at least three cutvertices, R°°~(G) is connected.

Proof. Since each edge is nonincident with at least one cutvertex in G. Then each edge-point is adjacent with
at least one cutvertex point in R%®~(G). Therefore it is sufficient to prove that every pair of cutvertex points
are connected. Consider ¢’; and ¢, any two cutvertex points in R°®~(G). Then we have the following two
cases.

Case 1. If there exist an edge e which is nonadjacent with ¢; and c,, then ¢’y and ¢, are connected
through of the edge point e'.

Case 2. If there exists no an edge which is nonadjacent with ¢; and c,, then there exist two edges e;, e,
and one cutvertex c; in which e; is nonadjacent with both ¢, and c; and e, is nonadjacent with both c;
and c; such that ¢'y, €'y, ¢'3, €'y, ¢’ is a path in R°°7(G).

Therefore, every pair of vertices in R%~ are connected. Hence R°°~(G) is connected.

Theorem 4.21: For any connected graph G, R°*~(G) is connected if and only if every edge is nonincident
with at least one cutvertex in G.
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Proof. Suppose that every edge is nonincident with at least one cutvertex in G. Since G is connected. Then
C(G) is connected and by hypothesis each edge point is adjacent with at least one cutvertex point in
R%*~(G). Therefore R~ (G) is connected.

Conversely, suppose that R°*~(G) is connected. Assume there is an edge e which is nonincident with
cutvertex in G. Then R°*~(G) = R%*~(G — e) U K; is disconnected, a contradiction.

Theorem 4.22: [1] For a given graph G, with m = 2 and block set U(G) = {By, ..., B;; s = 2}, RT°7(G) is
connected if and only if G satisfies following conditions:

i G+ Kin,
(i)) G # Kypn, UKyn,
(iii) G # Ky, U (Ui B

Theorem 4.23: For a given graph G, with m = 2 and block set U(G) = {By, ..., Bs;s = 2}, R**7(G) is
connected if and only if G satisfies following conditions:

(i) G+ Kin,
(ii) G # Kyp, UKyn,
(iii) G # Ky, U (Uiz; B).

Proof. 1t follows from Theorem 4.22, that R¥°7(G) is a connected spanning subgraph of R**~(G) which
implies that R**~(G) is connected.

Conversely, (i) If G = K; ,,, then R**7(G) = R*°(G) = K,,, U K; is disconnected, a contradiction.
(i) If G = Ky n, U Ky ,, then R**7(G) = R*°7(G) = Ky, 41 U Ky, 4 is disconnected, a contradiction.
Gi)If G =Ky U(Uiy B, then  R™(G) = R*(G) = Ky, U [(Uiy L(B)) + Kyl s

disconnected, a contradiction.

Theorem 4.24: For any connected graph G with two cutvertices, R~ (G) is connected if and only if G
contains an edge which is nonincident with both cutvertices.

Proof. Since R°~7(G) = R°°~(G) (because the cutvertices lie to the same block) the result follows from
Theorem 4.19.

Theorem 4.25: For any connected graph G with at least three cutvertices, R°™~(G) is connected.

Proof. Suppose that G is a connected graph with at least three cutvertices. Then R%°~ is a connected
spanning subgraph of R~ (&), Therefore the proof follows from the Theorem 4.20.

Theorem 4.26: For a given graph G, with block set U(G) = {B, ..., Bs; s = 2}, RY™7(G) is connected if and
only if G satisfies the following conditions:

() G#Kyp,
(i) G # Kin, U (Ui BY).

Proof. Suppose a graph G satisfies conditions (i) and (ii). We prove the result by following cases.
Case 1. If G is connected, then we have the following subcases.

Subcase 1.1. If G is a block, then R*~~(G) = L(G). Therefore by Theorem 2.1, R*~7(G) is connected.
Subcase 1.2. If G has at least one cutvertex, then by Theorem 2.1 and Remark 2.1 (i), L(G) is a connected
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induced subgraph of R*~~(G) and also by condition (i), each cutvertex point is adjacent to at least one edge
point because every cutvertex is nonincident with at least one edge in G. Hence R*~(G) is connected.

Case 2. If G is disconnected with G,, G,,... ,G;, t =2 components. By condition (ii), C(G), L(G,),
L(G,),...,L(G,) are connected induced subgraphs of R*~7(G). Also at least one edge point of L(G;) is
adjacent with at least one cutvertex point in R*~7(G).

Conversely, (i) If G = K; ,,,, then R*~7(G) = K,,, U K, is disconnected, a contradiction.
(i) If G = Ky ,, U (Ui=; B;), then R*~7(G) = K,, U [(U{; L(By)) + K;] is disconnected, a contradiction.

Theorem 4.27 For a given graph G with at least one cutvertex, R™Y~(G) is connected if and only if G has no
edge that is adjacent to all other edges.

Proof. Suppose that G contains no edge that is adjacent to every other edge of G, then by Theorem 2.2 and
Remark 2.1 (ii), J(G) is connected induced subgraph of R™7~(G). Also each cutvertex point is adjacent to at
least one edge point because every cutvertex is nonincident with at least one edge in G. Hence R™Y~(G) is
connected.

Conversely, assume that G contains an edge e that is adjacent to every other edge of G, then e is incident
with one or two cutvertices. And R™7~(G) = R™Y~(G — e) U K;, a contradiction.

5 Conclusion

In this paper, we have introduced 64 generalized xyz-line cut transformation graphs and we studied order,
size, degree of a vertex and connectedness of these new graphs. The study of diameter, traversability,
planarity, chromatic number, domination number, spectra, energy and topological indices of 64 generalized
xyz-line cut transformation graphs can be interesting. In [8,9], the authors gave the characterization of
RT*(G) and R***(G), respectively. Characterization of remaining 62 generalized xyz-line cut
transformation graphs can be quite challenging. (i.e., to prove that: A graph G is a generalized xyz- line cut
transformation graph if and only if it is isomorphic to the generalized xyz-line cut transformation graph
R*%(H) of some graph H.)
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