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1 INTRODUCTION 

 

Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spacesusing semi-open sets. It 

was further studied by Noiri and Popa[10],Dorsett[6] andArya[1]. Munshi[9], introduced g-regular and g- 

normal spaces using g-closed sets ofLevine[7]. Later, Benchalli et al [3] and Shik John[12] studied the 

concept of g*- pre-regular, g*-pre normal and w- normal, w-regular spaces in topological spaces.Recently, 

Benchalli et al [2,11] introduced and studied the properties of regular weakly closedsets and regular weakly 

continuous functions. 

 

2  PRELIMINARIES 

 

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on 

which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), 

A
c 
, and 𝛼-Cl(A), denote the Closure of A, Interior of A and Compliment of A and 

𝛼-closure of A in X respectively. 

 

Definition 2.1: A subset A of a topological space (X, τ) is called 

 

(i)Generalized closed set(briefly g-closed) [7] if cl(A)U whenever A  U and U is open in X. 

 

(ii)W-closed set[ 12] if cl(A)  U whenever A U and U is semi-open in X. 

 

Definition 2.2 :A topological space X is said to be a 

 

(1) 𝛼 - regular [4], if for each 𝛼 - closed set F of X and each point x ∉ F, there existsdisjoint  𝛼 -  open sets 

U and V such that F ⊆V and x 𝜖 U. 

 (2) w-regular[12], if for each closed set F of X and each point x ∉ F, there existsdisjoint w-open  
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sets U and V such that F⊆U and x𝜖V. 

 

(3)g-regular[10], if for each g-closed set F of X and each point x ∉F,there exists disjoint open sets U and V 

such that F⊆U and x 𝜖 V. 

 

Definition 2.3.A topological space X is said to be a 

 

(1) 𝛼-normal [4], if for any pair of disjointα − closed sets A and B, there exists dis-joint 𝛼-open sets U and 

V such that A⊆U and B⊆V . 

 

(2) w-normal [12], if for any pair of disjoint  w -closed sets A and B, there existsdisjoint open sets U and V 

such that A⊆ U and B⊆V. 

 

(3) g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V 

such that A⊆U and B⊆V. 

 

Definition 2.4: [2] A topological space X is called T regular weakly -space if every pre generalized pre regular 

weakly closed setis closed set. 

 

Definition 2.5:A map f: (X, τ)         (Y, τ) is said to be  

 

(i)Pre generalized pre regular weakly continuous map[19]if f 
-1

(V)is a pre generalized pre regular weakly 

closed set of (X, τ) for every closed set V of (Y, τ). 

 

(ii)Pre generalized pre regular weakly irresolute map[20]if f 
-1

(V)is a pre generalized pre regular weakly 

closed set of (X, τ) for everypre generalized pre regular weakly closed set V of (Y, τ). 

 

 

3.PRE GENERALIZED  PRE REGULAR WEAKLY REGULAR SPACE 

 

In this section, we introduce a new class of space called pre generalized pre regular weakly regular space 

using Pre generalized pre regular weakly closed set and obtain some of their characterizations. 

 

Definition 3.1. A topological space Xis said to be pre generalized pre regular weakly regular space if for 

each pre generalized pre regular weakly closedset F and a point x∉F, there exist disjoint open sets G and H 

such that F⊆G andx𝜖H. 

 

We have the following interrelationship between pre generalized pre regular weakly regularity and 

regularity. 

 

Theorem 3.2. Every pre generalized pre regular weakly regular space is regular. 

Proof: Let X be a pre generalized pre regular weakly regular space. Let F be any closed set in X and a point 

x∉Xsuch that x∉F. By [2], F is pre generalized pre regular weakly topological space-closed and x ∉F. Since 

X is a pre generalized pre regular weakly regular space, thereexists a pair of disjoint open sets G and H such 

that F ⊆ G and x 𝜖H. Hence X is aregular space. 

 

Remark 3.3: If X is a regular space and Tpre generalized pre regular weakly topological space, then X is pre generalized pre 

regular weakly  regular space then we have the following characterization. 

 

Theorem 3.4. The following statements are equivalent for a topological space X. 

 

(i) X is a pre generalized pre regular weakly  regular space 
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(ii) For each x 𝜖X and each pre generalized pre regular weakly topological spacesopen neighbourhood U of 

x,there exists an openneighbourhood N of x such that cl(N)⊆U. 

 

Proof: (i)implies(ii): Suppose X is a pre generalized pre regular weakly regular space. Let U be any pre 

generalized pre regular weakly neighbourhood of x. Then there exists pre generalized pre regular weakly 

open set G such that x 𝜖 G ⊆U. Now X –Gis pre generalized pre regular weakly  closed set and x ∉ X - G. 

Since X is pre generalized pre regular weakly regular space, then there exist open sets Mand N such that X -

G⊆M, x 𝜖 N and M ∩ N = 𝜑and so N ⊆X-M. Nowcl(N) ⊆ cl(X -M) = X-M and X -M ⊆M. This implies X -

M⊆ U. Thereforecl(N)⊆U. 

 

(ii)implies (i): Let F be any pre generalized pre regular weakly topological space closed set in X and x 𝜖X -F 

and X - F is aPre generalized pre regular weakly topological space open and so X - F is a pre generalized pre 

regular weakly topological space neighbourhood of x. By hypothesis, there existsan open neighbourhood N 

of x such that x 𝜖N and cl(N) ⊆X - F. This impliesF ⊆X - cl(N) is an open set containing F and N ∩ f(X - 

cl(N)= 𝜑 . Hence X ispre generalized pre regular weakly  regular space. 

 

We have another characterization of pre generalized pre regular weakly regularity in the following. 

 

Theorem 3.5: A topological space X is pre generalized pre regular weakly regular if and only if for each pre 

generalized pre regular weakly topological space closedset F of X and each x 𝜖X - F there exist open sets G 

and H of X such that x 𝜖 G,F⊆H and cl(G) ∩ cl(H) = ∅. 

Proof: Suppose X is pre generalized pre regular weakly regular space. Let F be a pre generalized pre regular 

weakly topological space closed set in X with x ∉F.Then there exists open sets M and H of X such that x 𝜖 

M, F ⊆H and M∩H =∅.This implies M∩cl(H) = ∅.As X is pre generalized pre regular weakly regular, there 

exist open sets U and V suchthat x 𝜖 U, cl(H)⊆V and U∩V = ∅. so cl(U)∩V = ∅.Let G = M ∩U, then G 

andH are open sets of X such that x𝜖G, F ⊆ H and cl(H) ∩cl(H) =∅. 

 

Conversely, if for each pre generalized pre regular weakly closed set F of X and each x 𝜖 X -F there exists 

opensets G and H such that x 𝜖 G, F⊆ H and cl(H)∩cl(H) =∅.This implies x 𝜖G,F⊆H and G ∩ H =  ∅. 

Hence X is pre generalized pre regular weakly regular. 

 

Now we prove that pre generalized pre regular weakly topological spaces- regularity is a heriditary property. 

 

Theorem 3.6. Every subspace of a pre generalized pre regular weakly regular space is pre generalized pre 

regular weakly regular. 

 

Proof: Let X be a pre generalized pre regular weakly  regular space. Let Y be a subspace of X. Let x 𝜖 Y 

and F bea pre generalized pre regular weakly closed set in Y such that x∉F. Then there is a closed set and so 

pre generalized pre regular weakly closedset A of X with F = Y ∩ A and x ∉A. Therefore we have x 𝜖 X, A 

is pre generalized pre regular weakly closedin X such that x∉A. Since X is pre generalized pre regular 

weakly regular, then there exist open sets G and H suchthat x  𝜖G, A⊆H and G∩H = 𝜑. Note that Y ∩G and 

Y∩H are open sets in Y.Also x 𝜖 G and x 𝜖Y, which implies x 𝜖 Y ∩G and A ⊆ H implies Y∩ G⊆Y 

∩H,F⊆Y∩H. Also (Y∩G)∩(Y∩H) = 𝜑. Hence Y is pre generalized pre regular weakly regular space. 

 

We have yet another characterization of pre generalized pre regular weakly topological spaces-regularity in 

the following. 

 

Theorem 3.7 : The following statements about a topological space X are equivalent: 

 

(i) X is pre generalized pre regular weakly regular 

(ii) For each x 𝜖 X and each pre generalized pre regular weakly topological space open set U in X such that 

x 𝜖 U there exists anopen set V in X such that x 𝜖  V⊆cl(V)⊆U. 
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(iii) For each point x 𝜖X and for each pre generalized pre regular weakly topological space closed set A with 

x ∉ A, then there exists anopen set V containing x such that cl(V)∩A = 𝜑. 

 

Proof: (i)implies(ii): Follows from Theorem 3.5. 

 

(ii) implies(iii): Suppose (ii) holds. Let x 𝜖 X and A be an pre generalized pre regular weakly topological 

spaceclosed set of X suchthat x ∉ A.Then X - A is a pre generalized pre regular weakly topological 

spaceopen set with x𝜖X -A. By hypothesis, thereexists an open set V such that x 𝜖V ⊆ cl(V ) ⊆ X - A. That 

is x𝜖 V , V⊆ cl(A) andcl(A) ⊆ X - A. So x  𝜖V and cl(V)∩A = 𝜑. 

 

(iii) implies(i): Let x 𝜖 X and U be an pre generalized pre regular weakly topological space open set in X 

such that x 𝜖 U. ThenX - U is an pre generalized pre regular weakly topological spaceclosed set and x∉ X - 

U. Then by hypothesis, there exists an openset V containing x such that cl(A) ∩(X -U) = Á. Therefore x 𝜖V , 

cl(V )⊆U sox 𝜖 V⊆ cl(V)⊆U. 

 

The invariance of pre generalized pre regular weakly topological space regularity is given in the following. 

 

Theorem 3.8:  Let f : X Y be a bijective, pre generalized pre regular weakly topological space irresolute and 

open map from a pre generalized pre regular weakly topological space regular space X into a topological 

space Y , then Y is pre generalized pre regular weakly topological spaces-regular. 

 

Proof: Let y 𝜖 Y and F be a pre generalized pre regular weakly topological space closed set in Y with y ∉ F. 

Since F is pre generalized pre regular weakly topological spaceirresolute, f
- 1

(F) is pre generalized pre 

regular weakly topological space closed set in X. Let f(x) = y so that x = f
-1 

(y) andx ∉ f
- 1

(F). Again X is pre 

generalized pre regular weakly-regular space, then there exist open sets U and V such thatx 𝜖 U and f
- 1

(F) ⊆ 

G, U ∩ V = 𝜑. Since f is open and bijective, we have y 𝜖 f(U),F ⊆ f(V ) and f(U) ∩f(V) = f(U∩V ) = f(𝜑) 

= 𝜑 . Hence Y is pre generalized pre regular weakly  regular space. 

 

Theorem 3.9. Let f : X Y be a bijective, pre generalized pre regular weakly closed and open map from 

atopological space X into a pre generalized pre regular weakly regular space Y . If X is Tpre generalized pre regular 

weakly topological spaces, then X is pre generalized pre regular weakly regular. 

 

Proof: Let x 𝜖X and F be an pre generalized pre regular weakly closed set in X with x ∉F. Since X is Tpre 

generalized pre regular weakly topological spaces,F is closed in X. Then f(F) is pre generalized pre regular weakly closed set 

with f(x)∉ f(F) in Y , since f is pre generalized pre regular weakly  closed. As Y is pre generalized pre 

regular weakly regular,then there exist open sets U and V such that x 𝜖  Uandf(x) 𝜖 U and f(F) ⊆V . 

Therefore x 𝜖 f
- 1

(U) and F⊆ f- 1
(V ). Hence X is pre generalized pre regular weakly regular space. 

 

Theorem 3.10. If f : X       Y is w-irresolute, continuous injection and Y is pre generalized pre regular 

weakly topological spaces-regular space,then X is pre generalized pre regular weakly topological spaces- 

regular. 

 

Proof: Let F be any closed set in X with x∉F. Since f is w-irresolute, f is pre generalized pre regular weakly 

topological space closed set in Yand f(x) 𝜖 f(F). Since Y is pre generalized pre regular weakly regular,then 

there exists open sets U and V such that f(x) 𝜖U and  

f(F) ⊆ V . Thus x 𝜖f
- 1

(U),F ⊆ f
- 1

(V ) and f
-1 

(U) ∩ f
-1

(V ) = 𝜑. Hence X is pre generalized pre regular 

weakly regular space. 

 

4 PRE GENERALIZED PRE REGULAR WEAKLY NORMAL SPACES 

 

In this section, we introduce the concept of pre generalized pre regular weakly normal spaces and study 

some of theircharacterizations. 
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Definition 4.1. A topological space X is said to be pre generalized pre regular weakly normal if for each pair 

ofdisjoint pre generalized pre regular weakly topological spacesclosed sets A and B in X,then there exists a 

pair of disjoint open sets U andV in X such that A ⊆ U and B ⊆V  

 

We have the following interrelationship. 

 

Theorem 4.2. Every pre generalized pre regular weakly normal space is normal. 

 

Proof: Let X be a pre generalized pre regular weakly normal space. Let A and B be a pair of disjoint closed 

sets inX. From [2], A and B are pre generalized pre regular weakly topological spacesclosed sets in X. Since 

X is pre generalized pre regular weakly normal, then there existsa pair of disjoint open sets G and H in X 

such that A⊆ G and B ⊆ H. Hence X is 

normal. 

 

Remark 4.3. The converse need not be true in general as seen from the following 

example. 

 

Example 4.4. Let X = Y ={a,b,c,d},τ ={X, ∅,{a},{c},{a,c},{b,c,d}}.Then 

the space X is normal but not pre generalized pre regular weakly normal, since the pair of disjoint pre 

generalized pre regular weakly topological spacesclosed setsnamely, A = {a,d}and B = {b,c}for which there 

do not exists disjoint open sets Gand H such that A ⊆ G and B⊆ H. 

 

Remark 4.5.:If X is normal and Tpre generalized pre regular weakly topological spaces, then X is pre generalized pre regular 

weakly -normal. 

 

Hereditary property of  pre generalized pre regular weakly normality is given in the following. 

 

Theorem 4.6.A pre generalized pre regular weakly closed subspace of a pre generalized pre regular weakly 

normal space is pre generalized pre regular weakly  normal.We have the following characterization. 

 

Theorem 4.7. The following statements for a topological space X are equivalent: 

 

(i) X is pre generalized pre regular weakly topological spaces is  normal 

(ii) For each pre generalized pre regular weakly closed set A and each pre generalized pre regular  

weakly topological space  open set U such that A⊆U, there existsan open set V such that  

A⊆V⊆cl(V)⊆U 

(iii) For any pre generalized pre regular weakly closed sets A, B, there exists an open set V such  

that A⊆V andcl(V)∩B = 𝜑. 

(iv) For each pair A, B of disjoint pre generalized pre regular weakly closed sets then there exist open sets U 

and V suchthat A ⊆ U,B ⊆V and cl(U) ∩cl(V ) = 𝜑. 

 

Proof: (i)implies(ii): Let A be a pre generalized pre regular weakly closed set and U be a pre generalized pre 

regular weakly open set such that A⊆ U.Then A and X - U are disjoint pre generalized pre regular weakly 

closed sets in X. Since X is pre generalized pre regular weakly normal , then thereexists a pair of disjoint 

open sets V and W in X such that A ⊆ V and X -U⊆W.Now X -W ⊆ X -(X -U), so X -W⊆  U also V∩W = 

𝜑.implies V ⊆ X -W, so 

cl(V)⊆cl(X -W) which implies cl(V ) ⊆ X -W. Therefore cl(V )⊆X -W⊆U. So cl(V ) ⊆ U. Hence 

A⊆V⊆cl(V)⊆U. 

 

(ii)implies(iii): Let A and B be a pair of disjoint pre generalized pre regular weakly closed sets in X. Now 

A∩B = 𝜑,so A⊆X -B, where A is pre generalized pre regular weakly closed and X - B is pre generalized pre 
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regular weakly open . Then by (ii) thereexists an open set V such that A⊆V⊆cl(V)⊆X-B. Now cl(V)⊆X - B 

impliescl(V)∩B = 𝜑. Thus A⊆V and cl(V)∩B = 𝜑. 

 

(iii) implies(iv): Let A and B be a pair of disjoint pre generalized pre regular weakly closed sets in X.Then 

from (iii)there exists an open set U such that A⊆U and cl(U)∩B = 𝜑. Since cl(V ) is closed, sopre 

generalized pre regular weakly closed set.Therefore cl(V ) and B are disjoint pre generalized pre regular 

weakly closed sets in X. By hypothesis,then their exists an open set V , such that B⊆V and cl(U) ∩cl(V ) = 

𝜑. 

 

(iv) implies(i): Let A and B be a pair of disjoint pre generalized pre regular weakly closed sets in X.Then 

from (iv)then there exist an open sets U and V in X such that A⊆U, B⊆V and  

cl(U)∩cl(V ) = 𝜑.So A ⊆ U , B⊆V and U∩V = 𝜑.Hence X is pre generalized pre regular weakly normal. 

 

Theorem 4.8. Let X be a topological space. Then X is pre generalized pre regular weakly normal if and only 

if forany pair A, B of disjoint pre generalized pre regular weakly closed setthen there exist open sets U and 

V of X such thatA⊆U,B⊆V and cl(U) ∩cl(V ) = 𝜑. 

 

Theorem 4.9. Let X be a topological space. Then the following are equivalent: 

(i) X is normal 

(ii) For any disjoint closed sets A and B,then there exist disjoint pre generalized pre regular weakly 

topological spaces- open sets U and Vsuch that A⊆U,B⊆V . 

(iii) For any closed set A and any open set V such that A⊆ V, there exists an pre generalized pre regular 

weakly open set U of X such that A⊆U⊆𝛼cl(U)⊆ V . 

 

Proof: (i) implies(ii): Suppose X is normal. Since every open set is pre generalized pre regular weakly open 

[2], (ii)follows. 

 

(ii) implies(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - 

V are disjoint closed sets. By (ii), then there exist disjoint pre generalized pre regular weakly  open sets U 

and W such that A⊆U and X - V ⊆ W, since X -V is closed, sopre generalized pre regular weakly is closed. 

From [2], we have X -V⊆𝛼-int(W) and U ∩  𝛼-int(W) =𝜑.and so wehave 𝛼-cl(U) ∩ 𝛼-int(W) = 𝜑. Hence A 

⊆ U ⊆𝛼-cl(U) ⊆ X – 𝛼-int(W)⊆V . ThusA ⊆ U ⊆𝛼-cl(U) ⊆ V . 

 

(iii) implies(i): Let A and B be a pair of disjoint closed sets of X.Then A ⊆X - B andX -B is open. There 

exists a pre generalized pre regular weakly open set G of X such that A ⊆ G  ⊆𝛼-cl(G) ⊆X-B.Since A is 

closed, it is w- closed, we have A ⊆𝛼-int(G). Take U = int(cl(int(𝛼-int(G))))and V = int(cl(int(X –𝛼-

cl(G)))). Then U and V are disjoint open sets of X such thatA ⊆U and B ⊆ V Hence X is normal. 

 

We have the following characterization of pre generalized pre regular weakly topological spaces- normality 

and pre generalized pre regular weakly topological spaces- normality. 

 
Theorem 4.10. Let X be a topological space. Then the following are equivalent: 

(i) X is 𝛼-normal. 

(ii) For any disjoint closed sets A and B, there exist disjoint pre generalized pre regular weakly topological 

space- open sets U and Vsuch that A⊆U,B⊆V and U∩ V = 𝜑. 

 

Proof: (i) implies(ii): Suppose X is 𝛼- normal. Let A and B be a pair of disjoint closedsets of X. Since X is 

𝛼-normal,there exist disjoint 𝛼 − open sets U and V such thatA⊆U and B⊆V and U ∩ V = 𝜑. 

(ii) implies(i):Let A and B be a pair of disjoint closed sets of X.The by hypothesis thereexist disjoint pre 

generalized pre regular weakly open sets U and V such that A⊆U and B ⊆ V and U ∩V = 𝜑 .Sincefrom [2], 

A⊆𝛼-intU and B ⊆𝛼 − int(V)and 𝛼 –intU∩ 𝛼-intV = 𝜑. Hence X is 𝛼-normal. 
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Theorem 4.11. Let X bea 𝛼- normal, then the following hold good: 

 

(i)For each closed set A and every pre generalized pre regular weakly open set B such that A⊆B ther 

exists a αopen set U such that A⊆U⊆α-cl(U)⊆ B. 

(ii) For every pre generalized pre regular weakly closed set A and every open set B containing A, there exist 

a α-open set U such that A⊆U⊆ α-cl(U)⊆B. 

 

 

REFERENCES: 

 

[1]       S.P. Arya and T.M. Nour, Characterization of s- normal spaces, Indian. J.Pure and Appl. Math., 

21(8),(1990), 717-719. 

[2]        S.S.Benchalli and  R.S Wali ,  on  rω- Closed sets is Topological Spaces, Bull, Malays,  

            Math, sci, soc30 (2007), 99-110. 

[3]        S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g*- Pre Regular and g*-Pre Normal Spaces, Int. 

Math. Forum 4/48(2010) 2399-2408. 

[4]     S.S. Benchalli and P.G. Patil, Some New Continuous Maps in TopologicalSpaces, Journal of 

Advanced Studies in Topology 2/1-2 (2009) 53-63. 

[5]    R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms inTopological 

Spaces,Ph.D. thesis, Bharatiyar University, Coimbatore (1994). 

[6]       C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180. 

[7]       N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2(1970) 89-96. 

[8]        S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 22 

(1978) 27-28. 

[9]         B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146. 

[10]      T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci.Kochi Univ. Math 

20 (1999)67-74.Journal of New Results in Science 5 (2014) 96-103 103 

[11]      R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university 

Dharwad(2007). 

[12]      M.Sheik. John, A Study on Generalizations of Closed Sets and Continuous Maps inTopological 

and Bitopological spaces , Ph.D Thesis, Bharathiar University, Coimbatore (2002). 

[13]     R.S.Wali and Vivekananda Dembre;On Pre Generalızed Pre Regular Weakly Closed Sets in 

Topologıcal Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 

2015. 

[14]      R.S.Wali  and  Vivekananda Dembre,  Minimal weakly open sets and maximal weakly closed sets 

in topological spaces ; International Journal of Mathematical Archieve; Vol-4(9)-Sept-2014 

[15]       R.S.Wali  and  Vivekananda Dembre, Minimal weakly closed sets and Maximal weakly open sets 

in topological spaces ; International Research Journal of Pure Algebra; Vol-4(9)-Sept-2014.  

[16]     R.S.Wali  and  Vivekananda Dembre, on semi-minimal open and semi-maximal closed sets in 

topological spaces ; Journal of Computer and Mathematical Science;Vol-5(9)-0ct-2014 

(International Journal). 

[17]      R.S.Wali  and  Vivekananda Dembre, on pre genearalized pre regular open sets and pre regular 

weakly neighbourhoods in topological spaces; Annals of Pure and Applied Mathematics ; Vol-10- 

12  2015. 

[18]     R.S.Wali  and  Vivekananda Dembre, on pre generalized pre regular weakly interior and pre 

generalized pre regular weakly closure in topological spaces, International Journal of Pure 

Algebra- 6(2),2016,255-259. 

[19]     R.S.Wali  and Vivekananda  Dembre ,on pre generalized pre regular weakly continuous maps in 

topological spaces, Bulletin of Mathematics and Statistics Research Vol.4.Issue.1.2016 (January-

March). 

[20]     R.S.Wali andVivekananda Dembre,on Pre-generalized pre regular weakly irresolute and strongly 

pgprw-continuous maps in topological spaces, Asian Journal of current Engineering and Maths 

5;2 March-April (2016)44-46. 



Vivekananda Dembre, Journal of Global Research in Mathematical Archives,5(3),130-137 

© JGRMA 2018, All Rights Reserved   137 

[21]       R.S.Wali and Vivekananda  Dembre,On Pgprw-locally closed sets in topological spaces, 

              International Jounal of Mathematical Archive-7(3),2016,119-123. 

[22]    R.S.Wali and Vivekananda Dembre,(𝜏1,𝜏2) pgprw-closed sets and open sets in Bitopological 

spaces,International Journal of Applied Research 2016;2(5);636-642.  

[23]       R.S.Wali and Vivekananda Dembre,Fuzzy pgprw-continuous maps and fuzzy pgprw-irresolute in 

fuzzy topological spaces; International Journal of Statistics and Applied Mathematics 

2016;1(1):01-04.  

[24]     R.S.Wali and Vivekananda Dembre,On pgprw-closed maps and pgprw-open maps in Topological 

spaces;International Journal of Statistics and Applied Mathematics 2016;1(1);01-04. 

[25]      Vivekananda Dembre, Minimal weakly homeomorphism and Maximal weakly homeomorphism in 

topological spaces, Bulletin of the Marathons Mathematical Society,Vol. 16, No. 2, December 

2015, Pages 1-7. 

[26]     Vivekananda Dembre and Jeetendra Gurjar, On semi-maximal weakly open and semi-minimal 

weakly closed sets in topological spaces, International Research Journal of Pure Algebra-Vol-

4(10), Oct – 2014. 

[27]     Vivekananda Dembre and Jeetendra Gurjar, minimal weakly open map and maximal weakly open 

maps in topological spaces, International  Research Journal of Pure Algebra-Vol.-4(10), Oct – 

2014; 603-606. 

[28]      Vivekananda Dembre ,Manjunath  Gowda and Jeetendra Gurjar, minimal weakly and maximal 

weakly continuous functions in topological spaces,International  Research Journal of Pure 

Algebra-vol.-4(11), Nov– 2014. 

[29]       Arun kumar Gali and Vivekananda Dembre, mınımal weakly generalızed closed sets and maxımal 

weakly generalızed open sets in topologıcal spaces, Journal of Computer and Mathematical 

sciences,Vol.6(6),328-335, June 2015. 

[30]     R.S.Wali and Vivekananda Dembre; Fuzzy Pgprw-Closed Sets and Fuzzy Pgprw-Open Sets in 

Fuzzy Topological SpacesVolume 3, No. 3, March 2016;Journal of Global Research in 

Mathematical Archives. 

[31]      Vivekananda Dembre and Sandeep.N.Patil; On Contra Pre Generalized Pre Regular Weakly 

              Continuous Functions In Topological Spaces; IJSART - Volume 3 Issue 12 – DECEMBER 2017. 

[32]   Vivekananda Dembre and Sandeep.N.Patil ; On Pre Generalized Pre Regular Weakly 

Homeomorphism in Topological Spaces;Journal of Computer and Mathematical Sciences, 

Vol.9(1), 1-5 January 2018. 

[33]    Vivekananda Dembre and Sandeep.N.Patil;on pre generalized pre regular weakly topological 

spaces;Journal of Global Research in Mathematical Archives volume 5, No.1, January 2018. 

[34]   Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy Pre Generalized Pre Regular Weakly 

Homeomorphism in Fuzzy Topological Spaces;International Journal of Computer Applications 

Technology and Research Volume 7–Issue 02, 28-34, 2018. 

[35]   Vivekananda Dembre and Sandeep.N.Patil;  PGPRW-Locally Closed Continuous Maps in 

Topological Spaces; International Journal of Trend in Research and Development, Volume 5(1), 

January 2018. 

[36]   Vivekananda Dembre and Sandeep.N.Patil ; Rw-Separation Axioms in Topological 

Spaces;International Journal of Engineering Sciences & Research Technology; Volume 7(1): 

January, 2018. 

[37]     Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy pgprw-open maps and fuzzy pgprw-closed 

maps in fuzzy topological spaces; International Research Journal of Pure Algebra-8(1), 2018, 7-

12. 

[38]    Vivekananda Dembre and Sandeep.N.Patil ; Pgprw-Submaximal spaces in topological spaces; 

International  Journal of applied research  2018; Volume 4(2): 01-02. 

 

 


