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Abstract 

In this paper, we introduce and investigate topological spaces called pgprw-compactness Spaces and 

pgprw-connectedness space and we get several characterizations and some of their properties. Also we 

investigate its relationship with other types of functions. 
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1. Introduction 

The notions of compactness and connectedness are useful and fundamental notions of not 

only general topology but also of other advanced branches of mathematics. Many researchers 

have investigated the basic properties of compactness and connectedness. The productivity 

and fruitfulness of these notions of compactness and connectedness motivated 

mathematicians to generalize these notions. In the course of these attempts many stronger 

and weaker forms of compactness and connectedness have been introduced and investigated. 

D. Andrijevic [1] introduced a new class of generalized open sets in a topological space called 

b-open sets. 

The class of b-open sets generates the same topology as the class of b-open sets. Since the 

advent of this notion, several research paper with interesting results in different respects 

came into existence. M. Ganster and M. Steiner [5] introduced and studied the properties of 

gb-closed sets in topological spaces. The aim of this paper is to introduce the concept of 

pgprw-compactness and pgprw-connectedness in topological spaces and is to give some 

characterizations of pgprw-compact spaces in terms of nets and filter bases. 

 

2. Preliminary Notes 

Throughout this paper (X,τ), (Y,σ) are topological spaces with no separation axioms assumed 

unless otherwise stated. Let A⊆X. The closure of a and the interior of A will be denoted by 

Cl (A) and Int (A) respectively. 

 

Definition 2.1: A subset A of X is said to be b-open [1] if A⊆ Int (Cl (A)) ∪Cl (Int (A)). The 

complement of b-open set is said to be b-closed. The family of all b-open sets (respectively 

b-closed sets) of (X, τ) is denoted by Bo (X,τ) [respectively bCL (X,τ)]. 

 

Definition 2.2: Let A be a subset of X. Then 

(i) b-interior [1] of A is the union of all b-open sets contained in A. 

(ii) b-closure [1] of A is the intersection of all b-closed sets containing A. The b-interior 

[respectively b-closure] of A is denoted by b-Int (A) [respectively b-Cl (A)]. 

 

Definition 2.3: Let A be a subset of X. Then A is said to be pgprw-closed [12] If pcl (A) ⊆U 

whenever A ⊆U and U ∈rg𝛼 (X,τ). The complement of pgprw-closed [12] set is called pgprw-

open. The family of all pgprw-open [respectively pgprw-closed] sets of (X, τ) is denoted by 

pgprwO (X, τ) [respectively, pgprw-CL (X, τ)]. 

 

Definition 2.4: The pgprw-closure [14] of a set A, denoted by pgprw-Cl (A), is the 

Intersection of all pgprw-closed sets containing A. 
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Definition 2.5: The pgprw-interior [14] of a set A, denoted 

by pgprw-Int (A), is the Union of all pgprw-open sets 

contained in A. 

 

Remark 2.6: Every pre-closed set is pgprw-closed. 

 

3. Pgprw-Compactness 

Definition 3.1: A collection {Ai: i ∈ ∧} of pgprw-open sets 

in a topological space X is called a pgprw-open cover of a 

subset B of X if B ⊂ {Ai: i ∈ ∧} holds. 

 

Definition 3.2: A topological space X is pgprw-compact if 

every pgprw-open cover of X has a finite sub-cover. 

 

Definition 3.3: A subset B of a topological space X is said 

to be pgprw-compact relative to X if, for every collection 

{Ai: i ∈ ∧} of pgprw-open subsets of X such that B ⊂ U {Ai: 

i ∈ ∧} there exists a finite subset ∧0 of ∧ such that B ⊆ U 

{Ai: i ∈ ∧0}. 

 

Definition 3.4: A subset B of a topological space X is said 

to be pgprw-compact if B is pgprw-compact as a subspace 

of X. 

 

Theorem 3.5: Every pgprw-closed subset of a pgprw-

compact space is pgprw-compact relative to X. 

 

Proof. Let A be pgprw-closed subset of pgprw-compact 

space X. Then AC is pgprw-open in X. Let M = {Gα: α ∈ ∧} 

be a cover of A by pgprw-open sets in X. Then M∗ = M∪Ac 

is a pgprw-open cover of X. Since X is pgprw-compact M∗ 

is reducible to a finite subcover of X, say X = Gα1∪Gα2∪· · 

·∪Gαm∪AC, Gαk∈ M. But A and AC are disjoint hence A ⊂ 

Gα1∪ · · · ∪ Gαm, Gαk∈ M, which implies that any pgprw-

open cover M of A contains a finite sub-cover.  

Therefore A is pgprw-compact relative to X. Thus every 

pgprw-closed subset of a pgprw-compact space X is pgprw-

compact. 

 

Definition 3.6: A function f: X → Y is said to be pgprw-

continuous [5] if f −1 (V) is pgprw-closed in X for every 

closed set V of Y. 

 

Definition 3.7: A function f: X → Y is said to be pgprw-

irresolute [5] if f −1 (V) is pgprw-closed in X for every 

pgprw-closed set V of Y. 

 

Theorem 3.8: A pgprw-continuous image of a pgprw-

compact space is compact 

 

Proof. Let f: X → Y be a pgprw-continuous map from a 

pgprw-compact space X onto a topological space Y. Let 

{Ai: i ∈ ∧} be an open cover of Y. Then {f −1 (Ai): i ∈ ∧} is 

a pgprw-open cover of X. Since X is pgprw-compact it has a 

finite sub-cover say {f −1 (A1), f−1 (A2), · · ·, f−1 (An)}. Since 

f is onto {A1, · · ·, an} is a cover of Y, which is finite. 

Therefore Y is compact. 

 

Theorem 3.9: If a map f: X → Y is pgprw-irresolute and a 

subset B of X is pgprw-compact relative to X, then the 

image f(B) is pgprw-compact relative to Y. 

 

Proof. Let {Aα: α ∈ ∧} be any collection of pgprw-open 

subsets of Y such that f (B) ⊂ ∪{Aα: α ∈ ∧}. Then B ⊂ ∪{f 

−1 (Aα): α ∈ ∧} holds. Since by hypothesis B is pgprw-

compact relative to X there exists a finite subset ∧0 of ∧ 

such that B ⊂ U {f −1 (Aα): α ∈ ∧0} Therefore we have f (B) 

⊂ ∪{Aα: α ∈ ∧0}, which shows that f (B) is pgprw compact 

relative to Y. 

 

4. Pgprw-Connectedness 

Definition 4.1: A topological space X is said to be pgprw-

connected if X cannot be expressed as a disjoint union of 

two non-empty pgprw-open sets. A subset of X is pgprw-

connected if it is pgprw-connected as a subspace. 

 

Example 4.2: Let X = {a, b} and let τ = {X, φ, {a}}. Then it 

is pgprw-connected. 

 

Remark 4.3: Every pgprw-connected space is connected 

but the converse need not be true in general, which follows 

from the following example. 

 

Example 4.4: Let X = {a, b} and let τ = {X, φ}. Clearly (X, 

τ) is connected. The pgprw-open sets of X are {X, φ, {a}, 

{b}}. Therefore (X, τ) is not a pgprw-connected space, 

because X = {a} ∪ {b} where {a} and {b} are non-empty 

pgprw-open sets. 

 

Theorem 4.5: For a topological space X the following are 

equivalent. 

(i) X is pgprw-connected. 

(ii) X and φ are the only subsets of X which are both pgprw-

open and pgprw-closed. 

(iii) Each pgprw-continuous map of X into a discrete space 

Y with at least two Points is a constant map. 

 

Proof: (i) ⇒ (ii): Let O be any pgprw-open and pgprw-

closed subset of X. Then OC is both pgprw-open and pgprw-

closed. Since X is disjoint union of the pgprw-open sets O 

and OC implies from the hypothesis of (i) that either O = φ 

or O = X. 

 

(ii) ⇒ (i): Suppose that X = A ∪ B where A and B are 

disjoint non-empty pgprw-open subsets of X. Then A is both 

pgprw-open and pgprw-closed. By assumption A = φ or X. 

Therefore X is pgprw-connected. 

 

(ii) ⇒ (iii): Let f: X → Y be a pgprw-continuous map. Then 

X is covered by pgprw-open and pgprw-closed covering {f 
−1(Y): y ∈ (Y)}. By assumption f −1(y) = φ or X for each y ∈ 

Y. If f−1(y) = φ for all y ∈ Y, then f fails to be a map. Then 

there exists only one point y ∈ Y such that f −1(y) ≠φ and 

hence f −1(y) = X. This shows that f is a constant map. 

 

(iii) ⇒ (ii): Let O be both pgprw-open and pgprw-closed in 

X. Suppose O ≠ φ. Let f: X → Y be a pgprw-continuous 

map defined by f (O) = y and f (OC) = {w} for some distinct 

points y and win Y. 

By assumption f is constant. Therefore we have O = X. 

 

Theorem 4.6: If f: X → Y is a pgprw-continuous and X is 

pgprw-connected, then Y is connected. 

 

Proof: Suppose that Y is not connected. Let Y = A∪B 

where A and B are disjoint non-empty open set in Y. Since f 

is pgprw-continuous and onto, X = f −1 (A) ∪ f −1 (B) where 

f −1 (A) and f −1 (B) are disjoint non-empty pgprw-open sets 
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in X. This contradicts the fact that X is pgprw-connected. 

Hence Y is connected. 
 

Theorem 4.7: If f: X → Y is a pgprw-irresolute surjection 

and X is pgprw-connected, then Y is pgprw-connected. 
 

Proof: Suppose that Y is not pgprw-connected. Let Y 

=A∪B where A and B are disjoint non-empty pgprw-open 

set in Y. Since f is pgprw-irresolute and onto, X = f −1 (A) ∪ 

f −1 (B) where f−1 (A) and f−1 (B) are disjoint non-empty 

pgprw-open sets in X. This contradicts the fact that X is 

pgprw-connected. Hence Y is connected. 
 

Theorem 4.8: In a topological space (X, τ) with at least two 

points, if pgprw-O(X, τ) = pgprw-CL(X, τ) then X is not 

pgprw-connected. 
 

Proof: By hypothesis we have pgprw-O(X, τ) = pgprw-

CL(X, τ) and by Remark 2.6 we have every pre-closed set is 

pgprw-closed, there exists some non-empty proper subset of 

X which is both pgprw-open and pgprw-closed in X. So by 

last Theorem 4.5 we have X is not pgprw-connected. 
 

Definition 4.9: A topological space X is said to be Tpgprw-

space if every pgprw-closed 

Subset of X is closed subset of X. 
 

Theorem 4.10: Suppose that X is a Tpgprw-space then X is 

connected if and only if it is pgprw-connected. 
 

Proof: Suppose that X is connected. Then X can not be 

expressed as disjoint union of two non-empty proper subsets 

of X. Suppose X is not a pgprw-connected space. Let A and 

B be any two pgprw-open subsets of X such that X = A∪B, 

where A ∩ B = φ and A ⊂ X, B ⊂ X. Since X is Tpgprw-

space and A, B are pgprw-open, A, B are open subsets of X, 

which contradicts that X is connected. Therefore X is 

pgprw-connected. Conversely, every open set is pgprw-

open. Therefore every pgprw-connected space is connected. 
 

Theorem 4.11: If the pgprw-open sets C and D form a 

separation of X and if Y is pgprw-connected subspace of X, 

then Y lies entirely within C or D. 
 

Proof: Since C and D are both pgprw-open in X the sets 

C∩Y and D∩Y are pgprw-open in Y these two sets are 

disjoint and their union is Y. If they were both non-empty, 

they would constitute a separation of Y. Therefore, one of 

them is empty. Hence Y must lie entirely in C or in D. 
 

Theorem 4.12: Let A be a pgprw-connected subspace of X. 

If A⊂B⊂pgprw-Cl (A) Then B is also pgprw-connected. 
 

Proof: Let A be pgprw-connected and let A⊂B⊂pgprw-Cl 

(A). Suppose that B = C∪D is a separation of B by pgprw-

open sets. Then by Theorem 4.11 above A must lie entirely 

in C or in D. suppose that A ⊂ C, then pgprw-Cl (A) ⊆ 

pgprw-Cl (C). Since pgprw-Cl (C) and Dare disjoint, B 

cannot intersect D. This contradicts the fact that D is non-

empty subset of B. So D = φ which implies B is 

pgprwconnected. 
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