International Journal of Trend in Research and Development, Volume 5(1), ISSN 2394-9333 www.ijtrd.com

Pre Generalized Pre Regular Weakly Axioms in Topological Spaces

¹Vivekananda Dembre, ²Pravin G. Dhawale and ³Devendra Gowda,

¹Assistant Professor, Department of Mathematics, Sanjay Ghodawat University, Kolhapur, India ^{2,3}Assistant Professor, Department of Electrical Engineering, Sanjay Ghodawat University, Kolhapur, India

Abstract: In this paper, we study some separation axioms namely, $pgprw-T_o$ -space, $pgprw-T_1$ -space and $pgprw-T_2$ -space and their properties. We also obtain some of their characterizations.

Keywords: PGPRW-T₀-SPACE, PGPRW-T₁ –SPACE, PGPRW-T₂-SPACE.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 54A05,54D05,54C10.

I. INTRODUCTION

In the year 2015,R.S.Wali and Vivekananda Dembre introduced and studied pgprw-closed and pgprw-open sets respectively. In this paper we define and study the properties of a new topological axioms called pgprw- T_0 -space, pgprw- T_1 -space, pgprw- T_2 -space.

II. PRELIMINARIES

Throughout this paper space (X,τ) and (Y,σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c,P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1:A subset A of a topological space (X, τ) is called

(i) A pre generalized pre regular ω eakly closed set(briefly pgpr ω -closed set)if pCl(A) \subseteq U whenever A \subseteq U and U is rg α -open in (X, τ).

(ii)A subset A of a topological space (X,τ) is called pre generalized pre regular ω eakly open (briefly pgpr ω -open) set in X if A^c is pgpr ω -closed in X.

(iii)A topological space X is called a τ_{pgprw} space if every pgprw -closed set in it is pre-closed.

Definiton 3: A map $f:(X, \tau) \rightarrow (Y, \sigma)$ is called

(i) Pgprw-continuous map[6] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y,σ) .

(ii)Pgprw-irresolute map[7]if $f^{-1}(v)$ is pgprw closed in (X,τ) for every pgprw-closed V in (Y,σ) .

(iii)Pgprw-closed map[8] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y,σ) .

(iv)Pgprw-open map[8] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y,σ) .

(v) P-irresolute map[11] if $f^{-1}(v)$ is p-closed in (X,τ) for every p-closed V in (Y, σ) .

IV. PRE GENERALIZED PRE REGULAR WEAKLY SPACE

Definition 4.4.1: A topological space (X, τ) is called pgprw-T_o-space if for anypair of distinct points x,y of (X,τ) there exists an pgprw-open set G such that $x \in G$, $y \notin G$ or $x \notin G$, $y \in G$.

Example 4.4.2: Let $X = \{a, b\}, \tau = \{\varphi, \{b\}, X\}$. Then (X, τ) is pgprw-T_o-space,since for any pair of distinct points a, b of (X,τ) there exists an pgprw-T_o open set $\{b\}$ such that a $\notin\{b\}, b\in\{b\}$.

Remark 4.4.3:Every pgprw-space is pgprw-T_o-space.

Theorem 4.4.4: Every subspace of a pgprw- T_0 -space ispgprw- T_0 -space.

Proof: Let (X,τ) be a pgprw-T_o-space and (Y,τ_y) be a subspace of (X,τ) . Let Y_1 and Y_2 be two distinct points of (Y,τ_y) . Since (Y,τ_y) is subspace of $(X,\tau),Y_1$ and Y_2 are also distinct points of (X,τ) . As (X,τ) is pgprw-T_o-space, there exists an pgprw-open set G such that $Y_1 \in G$, $Y_2 \notin G$. Then $Y \cap G$ is pgprw-open in (Y,τ_y) containing but Y_1 not Y_2 . Hence (Y,τ_y) is pgprw-T_o-space.

Theorem 4.4.5: Let f: $(X,\tau) \rightarrow (Y, \mu)$ be an injection, pgprwirresolute map. If (Y,μ) is pgprw-T_o-space, then (X,τ) is pgprw-T_o-space.

Proof: Suppose (Y, μ) is pgprw-T_o-space.Let a and b be two distinct points in(X, τ).As f is an injection f(a) and f(b) are distinct points in (Y,μ) . Since(Y, μ) ispgprw-T_o-space, there exists an pgprw-open set G in (Y,μ) such that f(a) \in G and f(b) \notin G. As f is pgprw-irresolute, f⁻¹(G) is pgprw-open set in (X,τ) suchthat $a\in$ f⁻¹(G) and $b\notin$ f⁻¹(G). Hence (X,τ) is pgprw-T_o-space.

Theorem 4.4.6: If (X,τ) is pgprw-T_o-space, T_{Pgprw}-space and (Y,τ_y) is pgprw-closed subspace of (X,τ) , then (Y,τ_y) is pgprw-T_o-Space.

Proof: Let (X,τ) bepgprw-T_o-space, T_{Pgprw} -space and (Y,τ_y) is pgprw-closed subspace of (X,τ) . Let a and b be two distinct points of Y. Since Y is subspace of (X,τ) , a and b are distinct points of (X,τ) . As (X,τ) is pgprw-T_o -space, thereexists an pgprw-open set G such that a \in G and b \notin G. Again since (X,τ) isT_{Pgprw}-space, G is open in (X,τ) . Then Y \cap Gis open. So Y \cap G is pgprw-open such that a \in Y \cap G and b \notin Y \cap G. Hence (Y,τ_y) is Pgprw-T_o-space.

Theorem 4.4.7:Let f: $(X,\tau) \rightarrow (Y,\mu)$ be bijective pgprw-open map from apgprw-T₀Space (X,τ) onto a topological space (Y,τ_y) . If (X,τ) is T_{pgprw}-space, then (Y,μ) is pgprw-T₀Space.

Proof: Let a and b be two distinct points of (Y,τ_y) . Since f is bijective, there exist two distinct points e and d of (X,τ) such that f(c) = a and f(d) = b. As (X,τ) is pgprw-T₀ Space, there exists a pgprw-open set G such that $c \in G$ and $d \notin G$. Since (X,τ)

International Journal of Trend in Research and Development, Volume 5(1), ISSN 2394-9333 www.ijtrd.com

is T_{pgprw} -space, G is open in (X,τ) . Then f(G) is pgprw-open in (Y, μ) , since f is pgprw-open, such that $a \in f(G)$ and $b \notin f(G)$. Hence (Y,τ_y) ispgprw-T₀-space.

Definition 4.4.8: A topological space (X,τ) is said to be pgprw-T₁-space if forany pair of distinct points a and b of (X,τ) there exist pgprw-open sets G and Hsuch that $a\in G$, $b\notin G$ and $a\notin H$, $b\in H$.

Example 4.4.9: Let $X = \{a,b\}$ and $\tau = \{\emptyset,\{a\}, X\}$. Then (X,τ) is atopological space. Here a and b are two distinct points of (X,τ) , then there exist pgprw-open sets $\{a\},\{b\}$ such that $a\in\{a\}, b\notin\{a\}$ and $a\notin\{b\}, b\in\{b\}$. Therefore (X,τ) is pgprw- T_0 space.

Theorem 4.4.10: If (X,τ) is pgprw-T₁-space,then (X,τ) is pgprw-T₀-space.

Proof: Let (X,τ) be apgprw-T₁-space. Let a and b be two distinct points of (X,τ) . Since (X,τ) ispgprw-T₁-space, there exist pgprw-open sets G and H such thata \in G, b \notin G and a \notin H, b \in H. Hence we have a \in G, b \notin G. Therefore (X,τ) is pgprw-T₀-space. The converse of the above theorem need not be true as seen from the following example.

Example 4.4.11: Let $X = \{a,b\}$ and $\tau = \{\varphi,\{b\},X\}$. Then (X,τ) is pgprw-T₀-space but not pgprw-T₁-space. For any two distinct points a, b of X and anpgprw-open set $\{b\}$ such that $a\notin\{b\}, b\in\{b\}$ but then there is no pgprw-open set Gwith $a\in G$, $b\notin G$ for $a\neq b$.

Theorem 4.4.12: If $f:(X,\tau) \to (Y,\tau_y)$ is a bijective pgprwopen map from a pgprw-T₁-space and T_{pgprw}-space (X,τ) on to a topological space (Y,τ_y) , then (Y,τ_y) is pgprw-T₁-space.

Proof: Let (X,τ) be a pgprw-T₁-space and T_{pgprw}-space. Let a and b be two distinct points of (Y,τ_y) . Since f is bijective there exist distinct points c and d of (X,τ) such that f(c) = a and f(d) = b. Since (X,τ) is pgprw-T₁-space there existpgprw-open sets G and H such that $c\in G$, $d\notin G$ and $c\notin H$, $d \in H$. Since (X,τ) is T_{pgprw}-space, G and H are open sets in (X,τ) also f is pgprw-open f(G)and f(H) are pgprw-open sets such that $a = f(c)\in f(G)$, $b = f(d)\notin f(G)$ and $a = f(c)\notin f(H)$, $b = f(d)\in f(H)$. Hence (Y,τ_y) is pgprw-T₁-space.

Theorem 4.4.13: If (X,τ) is pgprw T_1 space and T_{pgprw} -space, Y is a subspace of (X,τ) , then Y is pgprw T_1 space.

Proof: Let (X,τ) be a pgprw T_1 space and T_{pgprw} -space. Let Y be a subspace of (X,τ) .Let a and b be two distract points of Y. Since $Y \subseteq X$,a and b are alsodistinct points of X. Since (X,τ) is pgprw- T_1 -space, there exist pgprw-open sets Gand H such that $a \in G$, $b \notin G$ and $a \notin H$, $b \in H$. Again since (X,τ) is T_{pgprw} -space, G and H are open sets in (X,τ) , then $Y \cap G$ and $Y \cap H$ are open sets so pgprw-open sets of Y such that $a \in Y \cap G$, $b \notin Y \cap G$ and $a \notin Y \cap H$. Hence Y is pgprw T_1 space.

Theorem 4.4.14: Iff: $(X,\tau) \to (Y,\tau_y)$ is injective pgprwirresolute map from a topological space (X,τ) into pgprw-T₁space (Y,τ_y) , then (X,τ) is pgprw-T₁ - space.

Proof: Let a and b be two distinct points of (X,τ) . Since f is injective, f(a)and f(b) are distinct points of (Y,τ_y) . Since (Y,τ_y) is pgprw-T₁ space there exist pgprw-open sets G and H such that f(a) \in G, f(b) \notin G and f(a) \notin H, f(b) \in H.Since f is pgprw-irresolute, f⁻¹(G) and f⁻¹(H) are pgprw-open sets in (X,τ) such that a \in f⁻¹(G), b \notin f⁻¹(G) and a \notin f¹(H), b \in f⁻¹(H). Hence (X,τ) is pgprw-T₁space.

Definition 4.4.15: A topological space (X,τ) . is said to be pgprw-T₂- space(or T_{pgprw}-Hausdorff space) if for every pair of

distinct points x, y of X there exist T_{pgprw} -open sets M and N such that x \in N, y \in M and N \cap M = \emptyset .

Example 4.4.16: Let $X = \{a,b\}, \tau = \{\emptyset,\{a\},\{b\}, X\}$. Then (X,τ) istopological space. Then (X,τ) is pgprw-T₂-space. T_{pgprw}-open sets are $\emptyset, \{a\}, \{b\}, \text{and } X$. Let a and b be a pair of distinct points of X, then there exist T_{pgprw} - open sets $\{a\}$ and $\{b\}$ such that $a \in \{a\}, b \in \{b\}$ and $\{a\} \cap \{b\} = \emptyset$. Hence (X,τ) is pgprw-T₂-space.

Theorem 4.4.17: Every pgprw-T₂- space is pgprwT₁space.

Proof: Let (X,τ) be a pgprw-T₂- space. Let x and y be two distinct points in X.Since (X,τ) is pgprw-T₂- space, there exist disjoint T_{pgprw}-open sets U and V such that x \in U, and y \in V. This implies, x \in U, y \notin U and x \in V, y \notin V. Hence (X,τ) is pgprw-T₂- space.

Theorem 4.4.18: If (X, τ) is pgprw-T₂-space, T_{pgprw}- space and (Y, τ_y) is subspace of (X, τ) , then (Y, τ_y) is also pgprw-T₂-space.

Proof: Let (X, τ) , be a pgprw-T₂ - space and let Y be a subset of X. Let x and y beany two distinct points in Y. Since $Y \subseteq X, x$ and y are also distinct points of X. Since (X, τ) is pgprw-T₂ space, there exist disjoint T_{pgprw}-open sets G and Hwhich are also disjoint open sets, since (X, τ) is T_{pgprw} - space. So G∩Y andH∩Y are open sets and so T_{pgprw}- open sets in (Y, τ_y) . Also x∈G, x ∈Yimplies x∈G∩V and y∈H and y∈Y this implies y∈Y∩H, since G∩H = Ø,we have $(Y\cap G)\cap(Y\cap H) = Ø$. Thus G∩Y and H∩Y are disjointT_{pgprw}-open sets in Y such that x∈G∩Y, y∈H∩Y and $(Y\cap G)\cap(Y\cap H) = Ø$. Hence (Y, τ_y) is pgprw-T₂ - space.

Theorem 4.4.19: Let (X, τ) , be a topological space. Then (X, τ) , is pgprw-T₂-space if and only if the intersection of all T_{pgprw}-closed neighbourhood of each point of X is singleton.

Proof: Suppose (X, τ) , is pgprw-T₂-space. Let x and y be any two distinct points of X. Since X is pgprw-T₂-space, there exist open sets G and H such that $x \in G, y \in H$ and $G \cap H = \emptyset$.Since $G \cap H = \emptyset$.implies $x \in G \subseteq X$ -H. SoX-HisT_{pgprw}-closed neighbourhood of x, which does not contain y. Thus y does notbelong to the intersection of all T_{pgprw}-closed neighbourhood of x. Since y is arbitrary, the intersection of all T_{pgprw}-closed neighbourhoods of x is the singleton {x}.

Conversely, let (x) be the intersection of all T_{pgprw} closedneighbourhoods of an arbitrary point x \in X. Let y be any point of Xdifferent from x. Since y does not belong to the intersection, there exists aT_{pgprw} -closed neighbourhood N of x such that y \notin N. Since N is T_{pgprw} -neighbourhood of x, there exists an T_{pgprw} -open set G such x \in G \subseteq X.Thus G and X - N are T_{pgprw} -open sets such that x \subseteq G, y \in X-N andG \cap (X - N) = Ø. Hence (X, τ) is pgprw-T₂-space.

Theorem 4.4.20: Let f: (X, τ) , -» (Y, τ_y) be a bijective pgprw-open map. If (X, τ) is pgprw-T₂- space and T_{pgprw} space, then (Y, τ_y) is also pgprw-T₂- space.

Proof: Let (X, τ) , is pgprw-T₂- space and T_{pgprw}- space. Let y_1 and y_2 be two distinct points of Y. Since f is bijective map, there exist distinct points x_1 and x_2 of X such that $f(x_i) = y_j$ and $f(x_2) = y_2$. Since (X, τ) is pgprw-T₂- space, there exist pgprw-opensets G and H such that $X_1 \in G$, $X_2 \in H$ and $G \cap H = \emptyset$. Since (X, τ) isT_{pgprw}- space, G and H are open sets, then f(G) and f(H) are pgprw-open sets of (Y, τ_y) , since f is pprw-open, such that $y_1 = f(x_1) \in f(G)$, $y_2 = f(x_2) \in f(H)$ and $f(G) \cap f(H) = \emptyset$. Therefore we have $f(G) \cap f(H) = f(G \cap H) = \emptyset$. Hence (Y, τ_y) is pgprwT₂-space.

International Journal of Trend in Research and Development, Volume 5(1), ISSN 2394-9333 www.ijtrd.com

Theorem 4.4.21: Let (X, τ) be a topological space and let (Y, τ_y) be aPgprw-T₂-space. Let f: (X, τ) —> (Y, τ_y) be an injective pgprw-irresolute map. Then (X, τ) is pgprw-T₂-space.

Proof: Let X_1 and X_2 be any two distinct points of X. Since f is injective, $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$. Let $y_1 = f(x_1)$, $y_2 = f(x_2)$ so that $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. Then $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since (Y, τ_y) is Pgprw-T₂-space thereexist T_{pgprw} -open sets G and H such that $y_1 \in G$, $y_2 \in G$ and $G \cap H = \emptyset$. As f is T_{pgprw} -irresolute $f^{-1}(G)$ and $f^{-1}(H)$ are T_{pgprw} -open sets of (X, τ) . Now

f⁻¹(G) ∩f⁻¹(H) = f⁻¹(G ∩H) = f⁻¹(Ø) = Ø and y₁∈G implies f 1(y₁) ∈ f⁻¹(G) impliesX₁∈f⁻¹(G), y₂∈ H implies f⁻¹(y₂) ∈ f⁻¹(H) implies x₂∈ f⁻¹(H). Thus forevery pair of distinct points x₁, x₂ of X there exist disjoint T_{pgprw}-open setsf⁻¹(G) and f⁻¹(H) such that X₁∈f⁻¹(G), x₂∈f⁻¹(H). Hence (X, τ) is pgprw-T₂-space.

References

- R.S.Wali and Vivekananda Dembre, Minimal weakly open sets and maximal weakly closed sets in topological spaces; International Journal of Mathematical Archieve; Vol-4(9)-Sept-2014.
- [2] R.S.Wali and Vivekananda Dembre, Minimal weakly closed sets and Maximal weakly open sets in topological spaces ; International Research Journal of Pure Algebra; Vol-4(9)-Sept-2014.
- [3] R.S.Wali and Vivekananda Dembre, on semi-minimal open and semi-maximal closed sets in topological spaces; Journal of Computer and Mathematical Science; Vol-5(9)-0ct-2014 (International Journal).
- [4] R.S.Wali and Vivekananda Dembre, on pre generalized pre regular weakly closed sets in topological spaces ; Journal of Computer and Mathematical Science;Vol-6(2)-Feb-2015 (International Journal)
- [5] R.S.Wali and Vivekananda Dembre, on pre genearalized pre regular open sets and pre regular weakly neighbourhoods in topological spaces; Annals of Pure and Applied Mathematics"; Vol-10- 12 2015.
- [6] R.S.Wali and Vivekananda Dembre, on pre generalized pre regular weakly interior and pre generalized pre regular weakly closure in topological spaces, International Journal of Pure Algebra- 6(2),2016,255-259.
- [7] R.S.Wali and Vivekananda Dembre ,on pre generalized pre regular weakly continuous maps in topological spaces, Bulletin of Mathematics and Statistics Research Vol.4.Issue.1.2016 (January-March).
- [8] R.S.Wali andVivekananda Dembre,on Pre-generalized pre regular weakly irresolute and strongly pgprwcontinuous maps in topological spaces, Asian Journal of current Engineering and Maths 5;2 March-April (2016)44-46.
- [9] R.S.Wali and Vivekananda Dembre, On Pgprw-locally closed sets in topological spaces, International Journal of Mathematical Archive-7(3),2016,119-123.
- [10] R.S.Wali and Vivekananda Dembre, (τ_1, τ_2) pgprw-closed sets and open sets in Bitopological spaces, International Journal of Applied Research 2016;2(5);636-642.
- [11] R.S.Wali and Vivekananda Dembre, Fuzzy pgprwcontinuous maps and fuzzy pgprw-irresolute in fuzzy topological spaces; International Journal of Statistics and Applied Mathematics 2016;1(1):01-04.
- [12] R.S.Wali and Vivekananda Dembre, On pgprw-closed maps and pgprw-open maps in Topological spaces;

International Journal of Statistics and Applied Mathematics 2016;1(1);01-04.

- [13] Vivekananda Dembre, Minimal weakly homeomorphism and Maximal weakly homeomorphism in topological spaces, Bulletin of the Marathons Mathematical Society, Vol. 16, No. 2, December 2015, Pages 1-7.
- [14] Vivekananda Dembre and Jeetendra Gurjar, On semimaximal weakly open and semi-minimal weakly closed sets in topological spaces, International Research Journal of Pure Algebra-Vol-4(10), Oct – 2014.
- [15] Vivekananda Dembre and Jeetendra Gurjar, minimal weakly open map and maximal weakly open maps in topological spaces, International Research Journal of Pure Algebra-Vol.-4(10), Oct – 2014; 603-606.
- [16] Vivekananda Dembre ,Manjunath Gowda and Jeetendra Gurjar, minimal weakly and maximal weakly continuous functions in topological spaces,International Research Journal of Pure Algebra-vol.-4(11), Nov- 2014.
- [17] Arun kumar Gali and Vivekananda Dembre, minimal weakly generalized closed sets and maximalweakly generalized open sets in topological spaces, Journal of Computer and Mathematical sciences, Vol.6(6),328-335, June 2015. [I.F = 4.655].
- [18] R.S.Wali and Vivekananda Dembre; Fuzzy Pgprw-Closed Sets and Fuzzy Pgprw-Open Sets in Fuzzy Topological SpacesVolume 3, No. 3, March 2016; Journal of Global Research in Mathematical Archives.
- [19] Vivekananda Dembre and Sandeep.N.Patil; On Contra Pre Generalized Pre Regular Weakly Continuous Functions in Topological Spaces; IJSART - Volume 3 Issue 12 – DECEMBER 2017
- [20] Vivekananda Dembre and Sandeep.N.Patil ; On Pre Generalized Pre Regular Weakly Homeomorphism in Topological Spaces; Journal of Computer and Mathematical Sciences, Vol.9(1), 1-5 January 2018.
- [21] Vivekananda Dembre and Sandeep.N.Patil ;on pre generalized pre regular weakly topological spaces; Journal of Global Research in Mathematical Archives volume 5, No.1, January 2018.
- [22] Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy Pre Generalized Pre Regular Weakly Homeomorphism in Fuzzy Topological Spaces;International Journal of Computer Applications Technology and Research Volume 7–Issue 02, 28-34, 2018, ISSN:-2319–8656.
- [23] Vivekananda Dembre and Sandeep.N.Patil; PGPRW-Locally Closed Continuous Maps in Topological Spaces; International Journal of Trend in Research and Development, Volume 5(1), January 2018.
- [24] Vivekananda Dembre and Sandeep.N.Patil ; Rw-Separation Axioms in Topological Spaces; International Journal of Engineering Sciences & Research Technology; Volume 7(1): January, 2018.
- [25] Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy pgprw-open maps and fuzzy pgprw-closed maps in fuzzy topological spaces; International Research Journal of Pure Algebra-8(1), 2018, 7-12.
- [26] Vivekananda Dembre and Sandeep.N.Patil ; Pgprw-Submaximal spaces in topological spaces ; International Journal of applied research 2018; Volume 4(2): 01-02.