

Volume 5, No.1, January 2018

Journal of Global Research in Mathematical Archives

UGC Approved Journal

ISSN 2320 - 5822

RESEARCH PAPER

Available online at <u>http://www.jgrma.info</u>

ON PRE GENERALİZED PRE REGULAR WEAKLY TOPOLOGİCAL SPACES

¹Vivekananda Dembre and ²Sandeep N Patil

¹Assistant Professor, Department of Mathematics, Sanjay Ghodawat University,Kolhapur. ²Assistant Professor, Department of Civil Engineering, Sanjay Ghodawat Polytechnic,Kolhapur.

ABSTRACT: In this paper, we introduce and investigate topological spaces called pgprw- spaces and we get several characterizations and some of their properties. Also we investigate its relationship with other types of functions.

Keywords: Pgprw-closed sets, Pgprw-open sets, Pgprwtopological spaces. AMS Mathematical Subject classification(2010):54C10,54C08, 54C05.

I. INTRODUCTION:

In the year 2015,R.S.Wali and Vivekananda Dembre introduced and studied pgprw-closed and open sets respectively.In this paper we define and study the properties of a new topological spaces called pgprw spaces.

II.PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

(i) A pre generalized pre regular weakly closed set(briefly pgprw-closed set)[1] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is rga open in (X,τ) .

(ii) A subset A of a topological space (X,τ) is called pre generalized pre regular weakly open[2] (briefly pgpr ω -open) set in X if A^c is pgpr ω -closed in X.

(iii)Pre-open set [3] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.

(iv)Regular generalized α -closed set(briefly,rg α -closed)[4]if α cl(A) \subseteq UwheneverA \subseteq Uand U is regular α -open in X.

(v)Generalized pre closed (briefly gp-closed) set [5] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(vi)Generalized pre regular closed set(briefly gpr-closed)[9] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

(vii)Definition [10]A topological space (X,T) is called pre-regular $T_{1/2}$ -space if every gpr-closed set is preclosed.

Definition 2.2: A map $f:(X, \tau)$ (Y, σ)) is called (i) Pgprw-continuous map[6]if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y, σ) . (ii) Pgprw-irresolute map[7] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every pgprw-closed V in (Y, σ) . (iii)Pgprw-closed map[8] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y, σ) . (iv)Pgprw-open map[8] if $f^{-1}(v)$ is pgprw closed in (X,τ) for every closed V in (Y, σ) . (v) P-irresolute map[11]if $f^{-1}(v)$ is p-closed in (X,τ) for every p-closed V in (Y, σ) .

III ON PRE GENERALİZED PRE REGULAR WEAKLY TOPOLOGİCAL SPACES.

Definition 3.1: A topological space X is called a τ_{pgprw} space if every pgprw-closed set in it is pre-closed.

Example 3.2: $X = \{a, b, c, d\}, \tau = \{X, \Phi, \{a\}, \{b, \{a, b\}, \{a, b, c\}\}$. Here every pgprw-closed set is pre Closed .So (X, τ) is a τ_{pgprw} -space.

Example 3.3: X={a,b,c,d}, τ ={X, Φ ,{a},{b},{a,b,c}}. Here {a,d} is pgprw-closed, but not pre-closed So (X,T) is not T_{pgprw}- space.

Theorem 3.4: A topological space X is a τ_{pgprw} space iff for each x of X, $\{x\}$ is either rg α -closed or preopen.

Proof: Hypothesis: X is a τ_{pgprw} -space.Letx $\in X$. If $\{x\}$ is $rg\alpha$ -closed, then there is nothing to prove. If $\{x\}$ is not $rg\alpha$ -closed, then X- $\{x\}$ is not $rg\alpha$ -open and so X is the only $rg\alpha$ -open set containing X- $\{x\}$ and pcl(X- $\{x\}$) \subseteq X. Therefore X- $\{x\}$ is pgprw-closed. X is T_{pgprw} -space (hypothesis) and X- $\{x\}$ is pgprw-closed. Therefore X- $\{x\}$ is pre-closed. Therefore $\{x\}$ is pre-open. Thus for every x of X, a τ_{pgprw} -space, $\{x\}$ is either $rg\alpha$ -closed or pre-open.

Conversely, suppose for every $x \in X$, $\{x\}$ is either $rg\alpha$ -closed or pre-open.Let A be a pgprw-closed subset of X. Now to prove A is pre-closed, we prove pcl(A) \subseteq A.

Let $x \in pcl(A)$. Then by hypothesis (a) $\{x\}$ is pre-open ; If x is not in A, then $A \subseteq \{x\}$; a pre-closed set Therefore $pcl(A) \subseteq \{x\}$.'. $x \in \{x\}$ which is not true Therefore $x \in A$. Therefore $pcl(A) \subseteq A$. Thus every pgprw-closed set is pre-closed. Therefore X is $a\tau_{pgprw}$ - space.

Theorem 3.5: Every pre-regular $T_{1/2}$ -space is τ_{pgprw} - space.

Proof: Let X be a pre-regular $\tau_{1/2}$ -space and A be a pgprw-closed set. As every pgrgw-closed set is gpr-closed, A is gpr-closed. Since X is pre-regular $\tau_{1/2}$ -space, A is preclosed. So every pgpgw-closed set is preclosed. Therefore X is τ_{pgprw} - space.

Converse of the above theorem is not true.

For example 3.6: X= {a,b,c,d}, τ ={X, Φ , {a}, {b}, {a,b},{a,b,c}}. Here (X, T) is a τ_{pgprw} -space, but not a pre-regular $\tau_{1/2}$ -space.

Defintion 3.7:Let (X, τ) be topological space and τ -pgprw={V $\subseteq X$: pgpr ω -cl(V^c) = V^c }, τ -pgpr ω is toplogy on X.

Theorem 3.8: Let f: $X \rightarrow Y$ be a function. Let (X,τ) and (Y,σ) be any two spaces such that $\tau_{pgpr\omega}$ is a topology on X. Then the following statements are equivalent:

(i) For every subset A of X, $f(pgprw-cl(A)) \subseteq cl(f(A))$ holds, (ii) f: $(X, \tau_{pgpr\omega}) \rightarrow (Y, \sigma)$ is continuous.

Proof: Suppose (i)holds.Let A be closed in Y.Byhypothesf(pgprw-cl($f^{-1}(A)$)) \subseteq cl(A)=A.i.e. pgprw-cl($f^{-1}(A)$) \subseteq $f^{-1}(A)$.Also $f^{-1}(A)\subseteq$ pgpr ∞ cl($f^{-1}(A)$).Hence pgprw-cl($f^{-1}(A)$)= $f^{-1}(A)$. This implies $f^{-1}(A)\in \tau_{pgpr\omega}$.Thus $f^{-1}(A)$ is closed in (X, $\tau_{pgpr\omega}$) and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since f: $(X, \tau_{pgpr\omega}) \rightarrow (Y,\sigma)$ is continuous, $f^{-1}(cl(A))$ is closed in (X, τ_{pgprw}) that implies by definition 3.7pgprw- $cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Now we have, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ and by pgprw-closure, $Pgpr\omega-cl(A) \subseteq pgpr\omega-cl(f^{-1}(cl(f(A))))$. Therefore $f(pgprw-cl(A)) \subseteq cl(f(A))$. This proves (i).

Theorem 3.9: Let X and Y be pgpr $\omega \tau_p$ -spaces, then for a function f: $(X,\tau) \rightarrow (Y,\sigma)$, the following are equivalent:

- (i) f is p-irresolute map.
- (ii) f is $pgpr\omega$ -irresolute map.

Proof: (i)=> (ii): Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a p-irresolute map. Let V be a pgpr ω -closed set in Y. As Y is pgprwT_p-space, then V be a p-closed set in Y. Since f is p-irresolute map, f⁻¹ (V) is p -closed in X. But every p-closed set is pgprw -closed in X and hence f⁻¹ (V) is a pgpr ω -closed in X. Therefore, f is pgprw-irresolute map.

(ii)=> (i): Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a pgpr ω –irresolute map. Let V be a p-closed set in Y. But every p-closed set is pgpr ω -closed set and hence V is pgpr ω -closed set in Y and f is pgprw-irresolute map implies f⁻¹ (V) is pgprw-closed in X. But X is pgprwT_p-space and hence f⁻¹ (V) is p-closed set in X. Thus, f is p-irresolute map.

Theorem 3.10: If a mapping $f: (X, \tau) \to (Y, \sigma)$ is pgprw–closedmap,thenpgprw–cl(f(A)) $\subseteq f(cl(A))$ for every subset A of (X, τ) .

Proof.Suppose that f is pgprw–closed and A \subseteq X. Then cl(A) is closed in X and so f(cl(A)) is pgprw–closed in (Y, σ). We have f(A) \subseteq f(cl(A)), by Theorem 3.8, pgprw–cl(f(A)) \subseteq pgprw–cl(f(cl(A))) \rightarrow (i). Sincef(cl(A)) is pgprw–closed in (Y, σ), pgprw–cl(f(cl(A))) = f(cl(A)) \rightarrow (ii), by the Theorem 3.8. From (i) and (ii), we have pgprw–cl(f(A)) \subseteq f(cl(A)) forevery subset A of (X, τ).

Corollary 3.11: If a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pgpr ω -closed, then the image f(A) of closed set A in (X, τ) is $\tau_{pgpr\omega}$ -closed in (Y, σ) .

Proof.Let A be a closed set in (X, τ) . Since f is pgprw–closed, by above Theorem 3.10,pgprw– cl(f(A) \subseteq f(cl(A)) \rightarrow (i). Also cl(A)=A, as A is a closed set and so f(cl(A)) = f(A) \rightarrow (ii). From (i) and (ii), we have pgprw–cl(f(A)) \subseteq f(A). We know that f(A) \subseteq pgprw–cl(f(A)) and so pgprw–cl(f(A)) = f(A). Therefore f(A) is τ_{pgprw} –closed in (Y, σ).

Theorem 3.12: If f: $(X, \tau) \to (Y, \sigma)$ and g: $(Y, \sigma) \to (Z, \eta)$ is pgprw–closed maps and (Y, σ) be a T_{pgprw}-space then g°f: $(X, \tau) \to (Z, \eta)$ is pgprw–closed map.

Proof.Let A be a closed set of (X, τ) . Since f is pgpr ω -closed, f(A) is pgpr ω -closed in (Y, σ) . Then by hypothesis, f(A) is closed. Since g is pgpr ω -closed, g(f(A)) is pgpr ω -closed in (Z, η) and g(f(A)) = g \circ f(A). Therefore g \circ f is pgpr ω -closed map.

REFERENCES :

- R.S.Wali and Vivekananda Dembre; On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.
- [2] R.S.Wali and Vivekananda Dembre; On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological SpacesAnnals of Pure and Applied MathematicsVol. 10, No.1, 2015; Published on 12 April 2015.
- [3] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak Precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [4] A.Vadivel & K.vairamamanickam,rgα-Closed sets& rgα-open sets in Topological Spaces,Int Journal of math ,Analysis Vol 3, (2009)37,1803-1819.
- [5] H.Maki,J.Umehara and T.Noiri,Every Topological space is pre T_{1/2} mem Fac sci,Kochi univ,Math ,17 1996,33-42.
- [6] R.S.Wali and Vivekananda Dembre, On Pre Generalized Pre Regular Weakly Continuous in Topological Spaces ; Bulletin of Mathematicsand Statistics ResearchVol.4.Issue.1.2016 (January-March).
- [7] R.S.Wali and Vivekananda Dembre, On Pre Generalized Pre Regular Weakly irresolute and pgprwstrongly-Continuous functions in Topological Space; Asian Journal of Current Engineering and Maths 5:2 March-April (2016) 44 – 46.
- [8] R.S.Wali and Vivekananda Dembre, On Pre Generalized closed maps and pre generalized open maps Topological Spaces;International Journal of Statistics and Applied Mathematics 2016; 1(1): 17-21.
- [9] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [10] M.K.R.S. Veerakumar, pre semi closed sets, 1991 AMS classifications.
- [11] Jankovic, D.S, Mappings of extremely disconnected spaces, Acta, math hunger, 46(1985), 83-92.