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Abstract: In this paper, we study some separation axioms namely, w-To-space, w-T1 -space and w-T2-space and their properties. We 
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1. INTRODUCTION 
 

In the year 2000,Sheik John  introduced and studied w-closed 

and w-open sets respectively. In this paper we define and 

study the properties of a new topological axioms  called w-

To-space, w-T1 –space, w-T2-space. 

II.PRELIMINARIES 

Throughout this paper space (X,τ) and (Y,σ) (or simply X and 

Y) always denote topological space on which no separation 

axioms are assumed unless explicitly stated. For a subset A of 

a space X, Cl(A), Int(A), Ac, P-Cl(A) and P-int(A) denote the 

Closure of A, Interior of A , Compliment of A,  pre-closure of 

A and pre-interior of (A) in X respectively. 

Definition 2.1: A subset A of a topological space (X, τ) is 

called 

Definition 2.1: A subset A of a topological space (X, ) is 

called 

(i)A ωeakly closed set (briefly, ω-closed set) if Cl(A)U 

whenever AU and U is open in (X, ). 

(ii)A  subset A of a topological space (X,τ) is called  ωeakly 

open(briefly ω-open) set in X if Ac  is ω-closed in X. 

(iii)A topological space X is called a  w  space if every w -

closed set in it is closed. 

 

Defintion 3:  A map f:(X, )   -» (Y,  σ)  is called 

(i) W-continuous map [1] if f –1 (v) is w closed in (X, ) for 

every  closed V in (Y,σ).   

(ii)W-irresolute map[1]if  f – 1(v) is w closed in (X, )for every 

w-closed V in (Y,σ).   

(iii)W-closed map[1] if f – 1(v) is w closed in (X, ) for every  

closed V in (Y,σ).   

(iv)W-open map[1] if f –1(v) is w closed in (X, ) for every  

closed V in (Y,σ). 

4. W-TO-SPACE: 

 

Definition 4.4.1: A topological space (X, ) is called w-To-

space if for any pair of distinct points  x,y of (X, ) there 

exists an w-open set G such that x G, y G or x G, y G. 

 

Example 4.4.2: Let  X = {a, b},   ={ ,{b}, X}. Then (X, ) 

is w-To-space, since for any pair of distinct points a, b of 

(X, ) there exists an w-To open set {b} such that a 

{b},b {b}. 

 

Remark 4.4.3: Every w-space is  w-To-space. 

 

 

 

 

Theorem 4.4.4: Every subspace of a w-To-space  is w-To-

space. 

 

Proof: Let (X, ) be a w-To-space  and (Y, y) be a subspace 

of (X, ). Let Y1and Y2 be two distinct points of (Y, y). Since 

(Y, y)  is subspace of (X, ),Y1 and Y2 are also distinct points 

of (X, ). As (X, ) is w-To-space , there exists an w-open set 

G such that Y1 G, Y2  G. Then Y G is w-open in (Y, y) 

containing but Y1 not Y2. Hence (Y, y)  is w-To-space. 
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Theorem 4.4.5: Let f: (X, ) -» (Y, ) be an injection, w-

irresolute map. If (Y, ) is w-To-space, then (X, ) is  w-To-

space. 

Proof: Suppose (Y, )  is w-To-space. Let a and b be two 

distinct points in (X, ).   

As f is an injection f(a) and f(b) are distinct points in (Y, ). 

Since(Y, ) is w-To-space, there exists an w-open set G in 

(Y, ) such that f(a) G and f(b) G. As f is w-irresolute, f -

1(G) is w-open set in (X, ) such that a f -1(G) and b f -1(G). 

Hence (X, )  is w-To-space. 

 

Theorem 4.4.6: If (X, )  is w-To-space, TW-space and (Y, y) 

is w-closed subspace of  (X, ), then (Y, y)  is w-To -Space. 

Proof: Let (X, ) be w-To-space, TW-space and (Y, y) is w-

closed subspace of  (X, ). Let a and b be two distinct points 

of Y. Since Y is subspace of (X, ), a and b are distinct points 

of  (X, ). As (X, )is w-To -space, there exists an w-open set 

G such that a G and b G. Again since (X, )  is TW-space, G 

is open in (X, ).Then Y G is open. So Y G is w-open such 

that a Y G and b Y G. Hence (Y, y) is W-To –space. 

 

Theorem 4.4.7: Let f: (X, )  -» (Y, )  be bijective w-open 

map from a w-T0 Space (X, ) onto a topological space (Y, y). 

If (X, ) is Tw-space, then (Y, )  is w-T0 Space. 

 

Proof: Let a and b be two distinct points of (Y, y). Since f is 

bijective, there exist two distinct points e and d of (X, ) such 

that f(c) = a and f(d) = b. As (X, )  is w-T0 Space,there exists 

a w-open set G such that c  G and d G. Since (X, ) is Tw-

space, G is open in (X, ). Then f(G) is w-open in (Y, ),  

 

 

 

 

 

 

 

 

since f is w-open, such that a f(G) and b f(G). Hence 

(Y, y) is w-T0-space. 

 

Definition 4.4.8: A topological space (X, ) is said to be w-

T1-space if for any pair of distinct points a and b of (X, ) 

there exist w-open sets G and H such that a G, b G and 

a H, b H. 

 

Example 4.4.9: Let X = {a,b} and  = { ,{a},X}. Then 

(X, ) is a topological space. Here a and b are two distinct 

points of (X, ), then there exist w-open sets {a},{b} such that 

a {a}, b {a} and a {b}, b {b}. Therefore (X, ) is w-T0 

space. 

 

Theorem 4.4.10: If  (X, ) is w-T1-space,then (X, )  is w-To-

space. 

 

Proof: Let (X, )  be a w-T1-space. Let a and b be two distinct 

points of (X, ). Since (X, ) is w-T1-space, there exist w-open 

sets G and H such that a G, b G and a H, b H. Hence we 

have a G, b G. Therefore (X, ) is w-To-space. 

 

The converse of the above theorem need not be true as seen 

from the following example. 

 

Example 4.4.11: Let X = {a,b} and  ={ ,{b},X}. Then 

(X, ) is w-To-space  but not w-T1-space. For any two distinct 

points a, b of X and an w-open set {b} such that a {b}, 

b {b} but then there is no w-open set G with a G, b G for 

a b. 

 

Theorem 4.4.12: If f: (X, )  -» (Y, y)  is a bijective w-open 

map from a w-T1-space and Tw-space (X, ) on to a 

topological space (Y, y), then(Y, y)is w-T1-space. 

 

Proof: Let (X, ) be a w-T1-space and Tw-space. Let a and b 

be two distinct points of  (Y, y). Since f is bijective there 

exist distinct points c and d of (X, ) such that f(c) = a and f(d) 

= b. Since (X, ) is w-T1-space there exist w-open sets G and 

H such that c G, d G and c H, d H.  

 

 

 

 

 

 

 

 

 

 

 

Since (X, )  is Tw-space, G and H are open sets in (X, ) also 

f is w-open f(G) and f(H) are w-open sets such that a = f 

(c) f(G), b = f(d) f(G) and a= f(c)  f(H), b= f(d) f(H). 

Hence (Y, y) is w-T1-space. 

 

Theorem 4.4.13: If (X, )  is wT1 space and Tw-space, Y is a 

subspace of  (X, ), then Y is w-T1 space. 
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Proof: Let (X, ) be a w T1 space and  Tw-space. Let Y be a 

subspace of (X, ). Let a and b be two distract points of Y. 

Since YX, a and b are also distinct points of X. Since (X, ) 

is w-T1-space, there exist w-open sets G and H such that a G, 

b G and a H, b H. Again since (X, ) is Tw-space,G and H 

are open sets in (X, ), then Y G and Y H are open sets so  

w-open sets of Y such that a Y G, b Y G and a Y H, 

b Y H. Hence Y is w T1 space. 

 

 

Theorem 4.4.14: Iff: (X, ) -» (Y, y) is injective w-irresolute 

map from a topological space (X, ) into w-T1-space(Y, y), 

then (X, )is w-T1 - space. 

 

Proof: Let a and b be two distinct points of (X, ). Since f is 

injective, f(a) and f(b) are distinct points of  (Y, y). 

Since(Y, y) is  w-T1 space there exist  w-open sets G and H 

such that f(a) G, f(b)  G and f(a) H, f(b) H.Since f is w- 

irresolute, f -1(G) and  f -1(H) are  w-open sets in (X, ) such 

that a  f -1 (G), b f - 1(G) and a f 1(H), b f - 1(H). Hence 

(X, ) is w-T1 space. 

 

Definition 4.4.15: A topological space (X, ). is said to be w-

T2- space (or Tw-Hausdorff space) if for every pair of distinct 

points x, y of X there exist Tw-open sets M and N such that 

x N, y M and N M = . 

 

Example 4.4.16: Let X = {a,b},  = { ,{a},{b}, X}. Then 

(X, ) is topological space. Then (X, ) is w-T2-space. Tw-

open sets are  , {a}, {b},and X.  Let a and b be a pair of 

distinct points of X, then there exist Tw - open sets {a} and 

{b} such that a {a}, b {b} and {a} {b} = . Hence (X, ) 

is w-T2-space. 

 

 

 

 

 

 

 

 

 

 

Theorem 4.4.17: Every w-T2- space is w T1space. 

 

Proof: Let  (X, ) be a w-T2- space. Let x and y be two 

distinct points in X. Since (X, )  is w-T2- space, there exist 

disjoint Tw-open sets U and V such that x U, and y V. This 

implies, x U, y U and x V, y V. Hence (X, )  is w-T2- 

space. 

 

Theorem 4.4.18: If (X, ) is w-T2-space, Tw- space and 

(Y, y) is subspace of (X, ), then (Y, y)    is also w-T2-space. 

 

Proof: Let  (X, ), be a w-T2 - space and let Y be a subset of 

X. Let x and y be any two distinct points in Y. Since YX, x 

and y are also distinct points of X. Since (X, )is w-T2 - space, 

there exist disjoint Tw-open sets G and H which are also 

disjoint open sets, since (X, )  is Tw - space. So G Y and 

H Y are open sets and so Tw- open sets in (Y, y). Also x G, 

x Y implies x G V and y H and y Y this implies y 

Y H, since G H = ,  we have (Y G) (Y H) =  

Thus G Y and H Y are disjoint Tw-open sets in Y such that 

x G Y, y H Y and (Y G) (Y  H)= .  Hence (Y, y) 

is w-T2 - space. 

 

Theorem 4.4.19: Let  (X, ),  be a topological space. Then 

(X, ),is w-T2-space if and only if the intersection of all Tw-

closed neighbourhood of each point of X is singleton. 

 

Proof: Suppose (X, ), is w-T2-space. Let x and y be any two 

distinct points of X. Since X is w-T2-space, there exist open 

sets G and H such that x G, y H and G H = .Since 

G H =  implies x GX-H. SoX-H  is Tw-closed 

neighbourhood of x, which does not contain y. Thus y does 

not belong to the intersection of all Tw-closed neighbourhood 

of x. Since y is arbitrary, the intersection of all Tw-closed 

neighbourhoods of x is the singleton {x}. 

 

Conversely, let (x) be the intersection of all Tw-closed 

neighbourhoods of an arbitrary point x X. Let y be any point 

of X different from x. Since y does not belong to the 

intersection, there exists a Tw-closed neighbourhood N of x 

such that y N. Since N is Tw-neighbourhood of x, there 

exists an Tw-open set G such x GX. Thus G and X - N are 

Tw-open sets such that xG, y X-N and G (X - N) = . 

Hence (X, ) is w-T2-space. 

 

 

 

 

 

 

 

 

Theorem 4.4.20: Let f: (X, )   -» (Y, y)   be a bijective w-

open map. If (X, ) is w-T2- space and Tw space, then (Y, y)is 

also w-T2- space. 
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Proof: Let  (X, ), is w-T2- space and Tw- space. Let y1 and y2 

be two distinct points of Y. Since f is bijective map, there 

exist distinct points x1 and x2 of X such that f(xi) = yj and f(x2) 

= y2. Since (X, ) is w-T2- space,there exist w-open sets G and 

H such that X1 G, X2 H and  G H =  . Since (X, ) is Tw- 

space, G and H are open sets, then f(G) and f(H) are w- open 

sets of (Y, y) , since f is ppw-open, such that y1 =f(x1) f(G), 

y2 = f(x2)  f(H) and f(G) f(H) = . Therefore we have 

f(G) f(H) = f(G H) =  . Hence (Y, y)   is wT2-space. 

 

Theorem 4.4.21: Let (X, ) be a topological space and let 

(Y, y) be a W-T2-space. Let f: (X, )   —> (Y, y)   be an 

injective w-irresolute map. Then (X, )  is w-T2-space. 

 

Proof: Let x1 and x2 be any two distinct points of X. Since f is 

injective, x1  x2 implies f(x1)  f(x2). Let y1 = f(x1), y2 = 

f(x2) so that  x1 = f -1 (y1), x2 = f -1(y2).Then yl ,y2 Y such that 

y1  y2. Since (Y, y) is W-T2-space there exist Tw-open sets  

G and H such that y1 G, y2  G and G H =  . As f is Tw-

irresolute f -1(G) and f – 1 (H) are Tw-open sets of (X, ). 

 Now f - 1(G) f  -1(H) = f -1(G H) = f -1 ) =  and y1 G 

implies f - 1(y1)  f – 1(G) implies  x1   f -1(G), y2  H 

implies f -1(y2)  f -1(H) implies x2   f -1(H).Thus for every 

pair of distinct points x1, x2 of X there exist disjoint Tw-open 

sets f -1(G) and f -1(H) such that  

x1 f -1(G), x2  f'-1(H). Hence (X, ) is w-T2-space. 
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