PGPRW-Locally Closed Continuous Maps in Topological Spaces

¹Vivekananda Dembre and ²Sandeep.N Patil,

¹Assistant Professor, Department of Mathematics, Sanjay Ghodawat University, Kolhapur, India ²Assistant Professor, Department of Civil Engineering, Sanjay Ghodawat Polytechnic, Kolhapur, India

Abstract: In this paper, we introduce PGPRW-LC-continuous maps, PGPRW-LC*-continuous maps, PGPRW-LC**-continuous maps function, which are weaker than LC-continuous maps and obtain some of their properties.

Keywords:pgprw-locally closed sets, Pgprw-locally closed continuous maps, pgprw-closed sets, pgprw-open sets.

2000 Mathematics subject clssification: 54A05.54D05,54C10.

I. INTRODUCTION

Sheik john[1] introduced three new classes of sets denoted by W-LC set, W-LC^{*}set & W-LC set^{**} each of which contains LC(X,T) also various authors like park [2], Balachandran [3], and Veera kumar[4] have contributed to the development of generalization of locally closed sets and locally continuous maps maps in topological spaces.

II. PRELİMİNARİES

A subset A of t.s (X,T) is called a

(i) a pre generalized pre regular ω eakly closed set(briefly pgpr ω -closed set) if pCl(A) \subseteq U whenever A \subseteq U and[5] U is rg α open in (X, τ).

(ii) pre generalized pre regular ω eakly open set [6]in X if A^c is pgpr ω -closed in X.

(iii)PGPRW-LC set if $A=U\cap F[7]$ where U ispgprw-open and F is pgprw-closed in X.

(iv) PGPRW-LC^{*}set if $A=U\cap F[7]$ where U ispgprw-open and F isclosed in X.

(v)PGPRW-LC** set if if $A=U\cap F[7]$ where U isopen and F is pgprw-closed in X.

(vi)W-LC set if $A=U\cap F[1]$ where U isw-open and F is w-closed in X.

(vii) W-LC^{*} set if $A=U\cap F[1]$ where U isw-open and F is closed in X.

(viii)W-LC set^{**} if if $A=U\cap F[1]$ where U isopen and F is w-closed in X.

(ix) door space[9] if every subset of X is either open or closed in (X,T).

(x) Submaximal space[8] if every dense subset of X is open in X.

(xi) pgprw-submaximal space[10] if every dense subset of X is pgprw-open in X.

(xii)Regular openset [13] if A = int(cl(A)) and a regular closed set if A = cl(int(A)).

Definition 2.1 A map $f: (X,T) \rightarrow (Y,T)$ is called

(i) LC-continuous maps[12] if $f^{-1}(V)$ is a lc-set in (X,T) for each $V \epsilon \sigma$.

(ii) W-LC continuous maps if $[1]f^{-1}(V)$ is a w-lc-set in (X,T) for each $V \epsilon \sigma$.

Theorem 2.2 [7]:

(i)Every locally closed set is a PGPRW-LC set but not conversely.

(ii) Every PGPRW-LC* set is PGPRW-LC set.

(iii) Every PGPRW-LC*** set is PGPRW-LC set.

III. PGPRW-LOCALLY CLOSED CONTINUOUS MAPS IN TOPOLOGICAL SPACES

Definition 3.1:A function $f: (X,T) \rightarrow (Y,\sigma)$ is called PGPRW-LC continuous maps

(resp. PGPRW-LC* continuous maps, PGPRW-LC** -continuous maps) if $f^{-1}(V)\epsilon$ PGPRW-LC(X,T)(resp. $f^{-1}(V)\epsilon$ PGPRW-LC*(X,T), $f^{-1}(V)\epsilon$ PGPRW-LC**(X,T) for each V $\epsilon\sigma$.

Example 3.2: Let $X=Y=\{a,b,c\}$, $T=\{X,\emptyset,\{a\}\}$ and $\sigma=\{Y,\emptyset,\{a\},\{a,b\}\}$ then PGPRW-LC(X,T)= P(X) and the identity mapf : $(X,T) \longrightarrow (Y,T)$ is PGPRW-LCcontinuous maps.

Theorem 3.3: Let f: $(X,T) \rightarrow (Y,\sigma)$ be a function. Then we have the following.

International Journal of Trend in Research and Development, Volume 5(1), ISSN 2394-9333

www.ijtrd.com

(i) If f is locally continuous maps then it is PGPRW-LCcontinuous maps.

(ii) If f is PGPRW-LC* continuous maps then it is PGPRW-LCcontinuous maps.

(iii) If f is PGPRW-LC** continuous maps then it is PGPRW-LCcontinuous maps.

Proof: The proof follows from the definitions and theorem [2.2]However the converse of the above results are not true as seen by the following example.

Example 3.4: Let $X=Y=\{a,b,c\}$ T= $\{X,\emptyset,\{a\},\{a,b\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b\},\{a,b\}\}$.

f: $(X,T) \longrightarrow (Y,\sigma)$ be the identity map then f is PGPRW-LC continuous maps but not locally continuous maps, since for the the open set {b} in (Y,σ) f⁻¹(b) = b is not locally closed in (X,T).

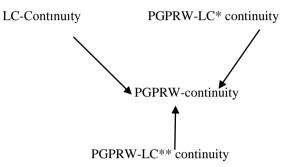
Example 3.5: Let $X=Y=\{a,b,c\}$ T= $\{X,\emptyset,\{a\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b\},\{a,b\}\}$.

f: $(X,T) \longrightarrow (Y,\sigma)$ be the identity map then f is PGPRW-LC-continuous maps but not PGPRW-LC*continuous maps, since for the the open set {b} in (Y,σ) f⁻¹(b) = b is not locally closed in (X,T).

Example 3.6: Let $X=Y=\{a,b,c\}$ T= {X, \emptyset ,{a}} and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a,b\}\}$.

f: (X,T) (Y, σ) be the identity map then f is pgprw-continuous maps but not PGPRW-LC**continuous maps, since for the the open set {a,b} of (Y, σ) f⁻¹(a,b) = {a,b} which is not a PGPRW-LC** set in (X,T).

Remark3.7: From the above information we have the following observation.



Theorem 3.8: Any map defined on a door space is pgprw-continuous maps (resp.PGPRW-LC* continuous maps,PGPRW**- continuous maps).

Proof: Let $f: (X,T) \longrightarrow (Y,\sigma)$ be a function, where (X,T) be a door space and (Y,σ) be a door space and (Y,σ) be any space. Let $A \epsilon \sigma$ then by the assumption on (X,T), $f^{-1}(A)$ is either open or closed. In the both the cases $f^{-1}(A)\epsilon PGPRW-LC$ (X,T) (resp. $f^{-1}(A)\epsilon PGPRW-LC^*$ (X,T), $f^{-1}(A)\epsilon PGPRW-LC^*$ (X,T), and therefore f is pgprw-continuous maps (resp.PGPRW-LC* continuous maps).

Theorem 3.9:A topological space (X,T) is pgprw-submaximal iff every function having (X,T) as domain is PGPRW-LC* continuous maps.

Proof: Let f: $(X,T) \rightarrow (Y,\sigma)$ be a function and (X,T) be pgprw-submaximal then w.k.t. A t.s (X,T); $P(X) = PGPRW-LC^*(X,T)$. If U is any open set of (Y,σ) , $f^{-1}(U) \in P(X) = PGPRW-LC^*(X,T)$ and so, f is PGPRW-LC* continuous maps.

Conversely, assume that every function having (X,T) as domain be PGPRW-LC* continuous maps. Consider the sierpinski space $Y = \{0,1\}$ with $\sigma = \{Y, \emptyset, \{0\}\}$. Let U be a subset of (X,T) and define f: $(X,T) \rightarrow (Y,\sigma)$ by f(X)=0 for every x ϵ u and f(x)=1 for every x does not belong to u by assumption $f^{-1}\{0\}=U \epsilon PGPRW-LC^*(X,T)$. Therefore we have $P(X)=PGPRW-LC^*(X,T)$ and so (X,T) is pgprw-submaximal and w.k.t A t.s (X,T) is pgprw-submaximal iff $P(X)=PGPRW-LC^*(X,T)$.

Theorem 3.10: If $f: (X,T) \longrightarrow (Y, \sigma)$ is PGPRW-LC* continuous maps and a subset B is both open and closed in (X,T) then restiction $f_B: (B, T_B) \longrightarrow (Y, \sigma)$ is PGPRW-LC* continuous maps.

Proof: Let G be an open set of (Y, σ) by hypothesis $f^{-1}(G)$ is a PGPRW-LC* set in (X,T) then

 $f^{-1}(G) = U \cap F$, for some pgprw-open set U and closed set F of (X,T);

then $f_B^{-1}(G) = B \cap f^{-1}(G) = B \cap U \cap F = (B \cap U) \cap (B \cap F)$. Since $B \cap F$ is closed in (X,T)

and $B \cap F \subseteq B$, $B \cap F$ is closed in (B, T_B) , Since $B \cap U$ is pgprw-open in $(X,T), B \cap U \subseteq B$

and B is regular open in (X,T),B \cap U is pgprw-open in (B, T_B). This shows that f_B⁻¹(G) ϵ PGPRW-LC* (B, T_B) and hence f_B is PGPRW-LC* continuous maps.

Theorem 3.11:Let $f : (X,T) \rightarrow (Y, \sigma)$ be PGPRW-LCcontinuous maps and B an open set in Y containing f(X). Then f: (X,T) (B,T_B) is PGPRW-LCcontinuous maps.

Proof: Let V be an open set in B. Then V is open in (Y, σ) since B is open in (Y, σ) . Therefore By hypothesis, $f^{-1}(V)$ is a PGPRW-LC set in (X,T) that is f: $(X,T) \rightarrow (B,T_B)$ is pgprw-continuous maps.

Example 3.12: Composition of two PGPRW-LCcontinuous maps not be PGPRW-LCcontinuous maps as seen from the following example.

IJTRD | Jan-Feb 2018 Available Online@www.ijtrd.com

International Journal of Trend in Research and Development, Volume 5(1), ISSN 2394-9333 www.ijtrd.com

Example 3.13: Let X=Y=Z={a,b,c} and $\tau = \{X, \emptyset, \{a\}, \{b,c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}\}, \mu = \{Z, \emptyset, \{a\}, \{b\}, \{a,c\}\}$ and a maps f: X Y, g: Y Z be identity mapthen both f and g are PGPRW-LC continuous maps but their composition

gof: $(X,T) \longrightarrow (Z,\mu)$ is not PGPRW-LC-continuous maps, since for open set {a,b} of (Z,μ) (gof)⁻¹(a,b)= f⁻¹(g⁻¹(a,b))= f⁻¹((a,b))= f

Theorem 3.14: If $f: (X,T) \longrightarrow (Y, \sigma)$ is PGPRW-LC-continuous maps (resp. PGPRW-LC* continuous maps,PGPRW-LC** continuous maps) and g: $(Y,T) \longrightarrow (Z,\mu)$ is continuous maps then gof: $(X,T) \longrightarrow (Z,\mu)$ is PGPRW-LCcontinuous maps (resp. PGPRW-LC*-continuous maps,PGPRW-LC**-continuous maps).

Proof: Let U be an open set in (Z,μ) since g is continuous maps $g^{-1}(U)$ is open in (Y, σ) .since f is pgprw-continuous maps, $f^{-1}(g^{-1}(u)) = (gof)^{-1}(u) = is$ a PGPRW-LC set in (X,T) and hence gof :(X,T) (Z,μ) is PGPRW-LCcontinuous maps.

References

- [1] M.sheik john, a study on generalization of closed sets on continuous maps maps in topological &Bitopological space,ph.d thesis, bharathiar university,Coimbatore (2002).
- [2] H.P.Perk and J.K.Perk, on locally δg closed sets, lδgc-continuous maps functions, solitions and fractals 19(2004),995-1002.6
- [3] K.Balachandran, P.sundaram, and H.Maki, g-lc and glc-continuous maps function, indian j pure apppMath, 27 (1966), 235-244.
- [4] M.K.R.S Veera kumar, locally closed sets and lc-functions, indian, j.math. 43(2)(2001), 237-247.
- [5] R.S.Wali and Vivekananda Dembre; On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.
- [6] R.S.Wali and Vivekananda Dembre;On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods inTopological SpacesAnnals of Pure and Applied MathematicsVol. 10, No.1, 2015;Published on 12 April 2015.
- [7] Vivekananda Dembre; on pgprw-locally closed continuous maps functions in topological spaces; On some advanced topics in general and fuzzy topological spaces; Ph.D Thesis Rani Channamma University; Belagavi (2017)
- [8] J.Dontchev ,on submaximal spaces, Tamkang j math.,26(1995)253-260.
- [9] J.dontchev, on door spaces, indian j pure appl math., 26(1995)873-881.
- [10] M.Ganster and I.L.Reily ,locally closed sets and locally closed continuous maps function internert.j.math.sci.,12(1989)417-424.
- [11] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc.41(1937), 374–481.