International Journal of Applied Research 2018; 4(2): 01-02

International Journal of Applied Research

ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2018; 4(2): 01-02 www.allresearchjournal.com Received: 01-12-2017 Accepted: 02-01-2018

Vivekananda Dembre

Assistant Professor, Department of Mathematics, Sanjay Ghodawat University, Kolhapur, Maharashtra, India

Patil Sandeep N

Assistant Professor, Department of Civil Engineering, Sanjay Ghodawat Polytechnic, Kolhapur, Maharashtra, India

Pgprw- Submaximal spaces in topological spaces

Vivekananda Dembre and Patil Sandeep N

Abstract

In this paper, we define pgprw-submaximal spaces and obtain some of their properties.

Keywords: Pgprw-submaximal spaces, Pgprw closed set and Pgprw-open set

1. Introduction

In the year 1995, J.Dontchev ^[3, 4], defined on door spees and submaximal spaces. and in this paper we define pgprw-submaximal spaces and obtain some of their properties.

- **2. Preliminaries:** A subset A of t.s (X,T) is called a
- (i) pre generalized pre regular weakly closed set(briefly pgprw-closed set) if $pCl(A)\subseteq U$ whenever $A\subseteq U$ and [1] U is $rg\alpha$ open in (X, τ) .
- (ii) pre generalized pre regular ωeakly open set [2] in X if A^c is pgprω-closed in X.
- (iii) Submaximal spaces [3] if every dense subset of X is open in X.
- (iv) door space [4] if every subset of X is either open or closed in X.
- (v) g-Submaximal space [5] if every dense subset of X is open in X.
- (vi) w-Submaximal space [6] if every dense subset of X is g-open in X
- (vii) rg-submaximal space [7] if every dense subset of X is rg-open in X.
- **2.1 Theorem** ^[8]: For a subset A of (X,T) if $A \in PGPRW-LC^{**}(X,T)$, then there exists an open set U s.t $A = U \cap pgprw-cl(A)$.
- **2.2 Theorem:** ^[8] For a subset A of (X,T), the following are equivalent.
- (i) $A \in PGPRW-LC^*(X,T)$.
- (ii) $A=U \cap (p-cl(A) \text{ for some pgprw-open set } U.$
- (iii) pcl(A)-A is pgprw-closed.
- (iv) A U(p-cl(A)^c is pgprw-open.

3. Pgprw- submaximal spaces in topological spaces.

Definition 3.1: A topological space (X,T) is called pgprw-submaximal if every dense subset is pgprw-open.

Theorem 3.2: A t.s (X,T) is pgprw-submaximal iff p(X) = PGPRW-LC*(X,T)

Proof: Let (X,T) be pgprw-submaximal. $A \in P(X)$ and $V = A \cup (X-p\text{-cl}(A))^c$ then $Cl(V) = cl(A) \cup (X-p\text{-cl}(A)^c)$

= cl (A) \cup (X-p-cl(A)

= X.

That is cl(V)=X. It follows that V is dense in (X,T) by assumption, V is pgprw-open by thm 2.1 [8], $A\epsilon$ PGPRW-LC *(X,T) Therefore p(X)= PGPRW-LC*(X,T).

Conversely, Let A be dense in (X,T) and $p(X) = PGPRW-LC^*(X,T)$ then $A = A \cup (X-p-cl(A)$ Since $A \in PGPRW-LC^*(X,T)$. $A = A \cup (X-p-cl(A)$ is pgprw-open by theorem 2.2; hence (X,T) is pgprw-submaximal.

Theorem 3.3: Every submaximal space is pgprw-submaximal but not conversely.

Correspondence Vivekananda Dembre

Assistant Professor, Department of Mathematics, Sanjay Ghodawat University, Kolhapur, Maharashtra, India **Proof:** Let (X, T) be a submaximal space and A be a dense subset of (X, T) then A is open but every open set is pgprwopen and so A is pgprw-open. Therefore (X, T) is a pgprw-submaximal space.

The Converse of the above theorem need not be true in geneal as seen from the followin example.

Example: Let $X = \{a, b, c\}$ with the topology $T = \{X, \emptyset, \{a\}, \{b, c\}\}$ however the set $A = \{a, b\}$ is dense in (X,T). But it is not open in (X, T) therefore (X, T) is not submaximal.

Remark 3.4: Pgprw-submaximal and g-submaximal spaces are independent of each other.

Example: Let $X = \{a, b, c\}$ $T = \{X, \emptyset, \{a\}, \{a, b\}\}$, in this space (X, T) every dense subset is pgprw-open and hence (X, T) is pgprw-submaximal. However the set $A = \{a, c\}$ is dense in (X, T) but it is not g open in (X, T) therefore (x, T) is not g -submaximal.

Example: Let $X = \{a, b, c\}$ $T = \{X, \emptyset, \{a\}, \{b, c\}\}$, in this space (X, T) every dense subset is g-open and hence (X, T) is g-submaximal. However the set $A = \{a, b\}$ is dense in (X, T) but it is not pgprw-open in (X, T) therefore (X, T) is not pgprw-submaximal.

Remark 3.5: Pgprw-submaximal and w-submaximal spaces are independent of each other.

Example: Let $X = \{a, b, c\}$, $T = \{X, \emptyset, \{a\}\}$, in this space (X, T) every dense subset is pgprw-open and hence (X, T) is pgprw-submaximal. However the set $A = \{a, c\}$ is dense in (X, T) but it is not w-open in (X, T) therefore (X, T) is not w-submaximal.

Example: Let $X = \{a, b, c\}$, $T = \{X, \emptyset, \{a\}, \{b, c\}\}$, in this space (X, T) every dense subset is w-open and hence (X, T) is w-submaximal. However the set $A = \{a, b\}$ is dense in (X, T) but it is not pgprw-open in (X, T) therefore (X, T) is not pgprw-submaximal.

Remark 3.6: Pgprw-submaximal and rg-submaximal spaces are independent of each other

Example: Let $X = \{a, b, c, d\}$ $T = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}\}$, in this space (X, T) every dense subset is pgprw-open and hence (X, T) is pgprw-submaximal. However the set $A = \{a, b, d\}$ is dense in (X, T) but it is not rg-open in (X, T). Therefore (X, T) is not rg-submaximal.

Example: Let $X = \{a, b, c\}$ $T = \{X, \emptyset, \{a\}, \{b, c\}\}$, in this space (X, T) every dense subset is rg-open and hence (X, T) is rg-submaximal. However the set $A = \{a, b\}$ is dense in (X, T) but it is not pgprw-open in (X, T). Therefore (X, T) is not pgprw-submaximal.

Remark 3.7: From the above discussions and known results we have the following results.

4. References

- 1. Wali RS, Vivekananda Dembre. On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces. Journal of Computer and Mathematical Sciences. 2015; 6(2):113-125.
- Wali RS, Vivekananda Dembre. On Pre Generalized Pre Regular Weakly Open Sets and Pre Generalized Pre Regular Weakly Neighbourhoods in Topological Spaces Annals of Pure and Applied Mathematics, 2015; 10:1. Published on 12 April 2015.
- 3. Dontchev J. on submaximal spaces, Tamkang j math. 1995; 26:253-260.
- 4. dontchev J. on door spaces, indian j pure appl math. 1995; 26:873-881.
- 5. Balachandran K, Sundaram P, Maki H. g-lc and glc-continuous function, Indian j pure appp Math. 1966; 27:235-244.
- 6. Sheik john M. a study on generalization of closed sets on continuous maps in topological & Bitopological spaces, ph.d thesis, bharathiar university, Coimbatore, 2002.
- 7. Arockiaarani I, balachandran k, ganster M. rg-locally closed sets & rgl- continuous function, Indian j pure appl math. 1997; 28:661-647.
- 8. Wali RS, Vivekananda Dembre. On pgprw-locally closed sets in topological spaces. Pgprw-locally closed sets in topological spaces. International Journal of Mathematical Archive. 2016; 7(3):119-123.