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Abstract 

In this paper, we define pgprw-submaximal spaces and obtain some of their properties. 
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1. Introduction 

In the year 1995, J.Dontchev [3, 4], defined on door spces and submaximal spaces. 

and in this paper we define pgprw-submaximal spaces and obtain some of their properties. 

 

2. Preliminaries: A subset A of t.s (X,T) is called a  

(i) pre generalized pre regular ωeakly closed set(briefly pgprω-closed set) if pCl(A)U 

whenever AU and [1] U is rgα open in (X, τ). 

(ii) pre generalized pre regular ωeakly open set [2] in X if Ac is pgprω-closed in X. 

(iii) Submaximal spaces [3] if every dense subset of X is open in X. 

(iv) door space [4] if every subset of X is either open or closed in X. 

(v) g-Submaximal space [5] if every dense subset of X is open in X. 

(vi) w-Submaximal space [6] if every dense subset of X is g-open in X 

(vii)  rg-submaximal space [7] if every dense subset of X is rg-open in X. 

 

2.1 Theorem [8]: For a subset A of (X,T) if A𝜖PGPRW-LC**(X,T),then there exists an open 

set U s.t A= U ∩ pgprw-cl(A). 

 

2.2 Theorem: [8] For a subset A of (X,T), the following are equivalent. 

(i) A𝜖 PGPRW-LC*(X,T). 

(ii) A= U ∩ (p-cl(A) for some pgprw-open set U. 

(iii) pcl(A)-A is pgprw-closed.  

(iv) A ∪(p-cl(A)c is pgprw-open. 

 

3. Pgprw- submaximal spaces in topological spaces. 

Definition 3.1: A topological space (X,T) is called pgprw-submaximal if every dense subset 

is pgprw-open. 

 

Theorem 3.2: A t.s (X,T) is pgprw-submaximal iff p(X)= PGPRW-LC*(X,T) 

 

Proof: Let (X,T) be pgprw-submaximal. A𝜖P(X) and V = A ∪ ( X- p-cl(A))c then  

Cl(V) = cl ( A ∪ (X-p-cl(A)c)  

= cl (A) ∪ (X-p-cl(A) 

= X. 

That is cl(V)= X. It follows that V is dense in (X,T) by assumption, V is pgprw-open by thm  

2.1 [8], A𝜖 PGPRW-LC *(X,T) Therefore p(X)= PGPRW-LC*(X,T). 

Conversely, Let A be dense in (X,T) and p(X)= PGPRW-LC*(X,T) then A= A∪ (X-p-cl(A) 

Since A𝜖PGPRW-LC *(X,T). A = A ∪ (X-p-cl(A) is pgprw-open by theorem 2.2; hence 

(X,T) is pgprw-submaximal. 

 

Theorem 3.3: Every submaximal space is pgprw-submaximal but not conversely. 
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Proof: Let (X, T) be a submaximal space and A be a dense 

subset of (X, T) then A is open but every open set is pgprw-

open and so A is pgprw-open. Therefore (X, T) is a pgprw-

submaximal space. 

The Converse of the above theorem need not be true in 

geneal as seen from the followin example. 

 

Example: Let X= {a, b, c} with the topology T = {X, ∅, 

{a}, {b, c}} however the set A= {a, b} is dense in (X,T). 

But it is not open in (X, T) therefore (X, T) is not 

submaximal. 

 

Remark 3.4: Pgprw-submaximal and g-submaximal spaces 

are independent of each other.  

 

Example: Let X= {a, b, c} T= { X, ∅, {a}, {a, b}}, in this 

space (X, T) every dense subset is pgprw-open and hence 

(X, T) is pgprw-submaximal. However the set A = {a, c} is 

dense in (X, T) but it is not g open in (X, T) therefore (x, T) 

is not g -submaximal. 

 

Example: Let X= {a, b, c} T= { X, ∅, {a}, {b, c}}, in this 

space (X, T) every dense subset is g-open and hence (X,T) 

is g -submaximal. However the set A = {a, b} is dense in 

(X, T) but it is not pgprw-open in (X, T) therefore (X, T) is 

not pgprw-submaximal. 

 

Remark 3.5: Pgprw-submaximal and w-submaximal spaces 

are independent of each other.  

 

Example: Let X= {a, b, c}, T= { X, ∅, {a}}, in this space 

(X, T) every dense subset is pgprw-open and hence (X,T) is 

pgprw-submaximal. However the set A = {a, c} is dense in 

(X, T) but it is not w-open in (X, T) therefore (X, T) is not w 

-submaximal. 

 

Example: Let X= {a, b, c}, T= {X, ∅, {a}, {b, c}}, in this 

space (X, T) every dense subset is w-open and hence (X,T) 

is w -submaximal. However the set A = {a, b} is dense in 

(X, T) but it is not pgprw-open in (X, T) therefore (X, T) is 

not pgprw-submaximal. 

 

Remark 3.6: Pgprw-submaximal and rg-submaximal spaces 

are independent of each other  

 

Example: Let X= {a, b, c, d} T= {X, ∅, {a}, {c, d}, {a, c, 

d}}, in this space (X, T) every dense subset is pgprw-open 

and hence (X, T) is pgprw-submaximal. However the set A 

= {a, b, d} is dense in (X, T) but it is not rg-open in (X, T). 

Therefore (X, T) is not rg-submaximal. 

 

Example: Let X= {a, b, c} T= {X, ∅, {a}, {b, c}}, in this 

space (X, T) every dense subset is rg-open and hence (X, T) 

is rg-submaximal. However the set A = {a, b} is dense in 

(X, T) but it is not pgprw-open in (X, T). Therefore (X, T) is 

not pgprw-submaximal. 

 

Remark 3.7: From the above discussions and known results 

we have the following results. 
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