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I. INTRODUCTION 

The notions of compactness and connectedness are useful and 

fundamental notions of not only general topology but also of 

other advanced branches of mathematics. Many researchers 

have investigated the basic properties of compactness and 

connectedness. M. Ganster and M.Steiner [5] introduced and 

studied the properties of gb-closed sets in topological spaces. 

The aim of this paper is to introduce the concept of W-

compactness and W-connectedness in topological spaces and is 

to give some characterizations of W-compact spaces. 

II. PRELIMINARY NOTES 

Throughout this paper (X, τ), (Y, σ) are topological spaces 

with no separation axioms assumed unless otheWise stated. 

Let A⊆X. The closure of A and the interior of A will be 

denoted by Cl(A) and Int(A) respectively. 

Definition 2.1:A subset A of X is said to be b-open [1] if 

A⊆Int(Cl(A))∪Cl(Int(A)). The  complement of b-open set is 

said to be b-closed. The familyof all b-open sets (respectively 

b-closed sets) of (X, τ) is denoted by bO(X, τ)[respectively 

bCL(X, τ)]. 

Definition 2.2:Let A be a subset of X. Then 

(i) b-interior [1] of A is the union of all b-open sets contained 

in A. 

(ii) b-closure [1] of A is the intersection of all b-closed sets 

containing A.The b-interior [respectively b-closure] of A is 

denoted by b-Int(A) [respectivelyb-Cl(A)]. 

Definition 2.3:Let A be a subset of X. Then A is said to be W-

closed if  cl(A) ⊆U whenever A ⊆U and U∈O(X, τ). The 

complement of W-closed  set is called W-open. The family of 

all W-open [respectively W-closed] sets of (X, τ) is denoted by 

WO(X, τ) [respectively,W-CL(X, τ)]. 

Definition 2.4:The W-closure [35] of a set A, denoted by W-

Cl(A), is the intersection of all W-closed sets containing A. 

Definition 2.5:The W-interior [35] of a set A, denoted by W-

Int(A), is the union of all W-open sets contained in A. 

Remark 2.6:Every closed set is W-closed. 

 

III. W-COMPACTNESS 

Definition 3.1:A collection {Ai:i∈∧} of W-open sets in a 

topological space X is called a W-open cover of a subset B of 

X if  B⊂{Ai: i∈∧} holds. 

Definition 3.2:A topological space X is W-compact if every 

W-open cover of X has a finite sub-cover. 

Definition 3.3:A subset B of a topological space X is said to 

be W-compact relative to X if, for every collection {Ai:i∈∧} of 

W-open subsets of X such that B ⊂U {Ai : i∈∧} there exists a 

finite subset ∧0of ∧such that B ⊆ U {Ai: i∈∧0}. 

Definition 3.4:A subset B of a topological space X is said to 

be W-compact if B is W-compact as a subspace of X. 

Theorem 3.5:Every W-closed subset of a W-compact space is 

W-compact relative to X. 

Proof: Let A be W-closed subset of W-compact space X. Then 

A
C
is W-open in X. Let M = {Gα:α∈∧} be a cover of A by W-

open sets in X. Then M∗= M∪A
c
is a W-open cover of X. Since 

X is W-compact M∗is reducible to a finite subcover of X, say 

X = Gα1∪Gα2∪· · ·∪Gαm∪A
C
, Gαk∈M. ButA andA

C
are 

disjoint hence A ⊂Gα1∪ · · · ∪Gαm, Gαk∈M, which 

impliesthat any W-open cover M of A contains a finite sub-

cover. 

Therefore A is W-compact relative to X.Thus every W-closed 

subset of a W-compact space X is W-compact. 

Definition 3.6:A function f :X → Y is said to be W-

continuous [5] if f 
−1

(V ) is W-closed in X for every closed set 

V of Y . 

Definition 3.7:A function f :X → Y is said to be W-irresolute 

[5] if f 
−1

(V ) is W-closed in X for every W-closed set V of Y . 

Theorem 3.8:A W-continuous image of a W-compact space is 

compact 

Proof.Let f :X → Y be a W-continuous map from a W-

compact space X onto a topological space Y. Let {Ai:i∈∧} be 

an open cover of Y . Then {f 
−1

(Ai) : i∈∧} is a W-open cover 

of X. Since X is W-compact it has a finite sub-cover say {f 
−1

(A1), f
−1

(A2), · · · , f
−1

(An)}. Since f is onto {A1, · · ·, An} is 

a cover of Y , which is finite. Therefore Y is compact. 

Theorem 3.9:If a map f :X → Y is W-irresolute and a subset 

B of X is W-compact relative to X, then the image f(B) is W-

compact relative to Y . 

Proof. Let {Aα:α ∈∧} be any collection of W-open subsets of 

Y such that f(B) ⊂∪{Aα: α ∈∧}. Then B ⊂∪{f 
−1

(Aα) : α ∈∧} 

holds. Since by hypothesis B is W-compact relative to X there 

exists a finite subset ∧0of ∧ such that B⊂U {f 
−1

(Aα) :α ∈∧0} 

Therefore we have f(B) ⊂∪{Aα: α ∈∧0}, which shows that f(B) 

is W compact relative to Y. 
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IV. W-CONNECTEDNESS 

Definition 4.1:A topological space X is said to be W-

connected if X cannot be expressed as a disjoint union of two 

non-empty W-open sets. A subsetof X is W-connected if it is 

W-connected as a subspace. 

Example 4.2:Let X = {a, b} and let τ = {X, υ, {a}}. Then it is 

W-connected. 

Remark 4.3:Every W-connected space is connected but the 

converse need not be true in general, which follows from the 

following example. 

Example 4.4:Let X = {a, b} and let τ = {X, υ}. Clearly (X, τ) 

is connected. The W-open sets of X are {X, υ, {a} ,{b}}. 

Therefore (X, τ) is not a W-connected space, because X = {a} 

∪ {b} where {a} and {b} are non-empty W-open sets. 

Theorem 4.5:For a topological space X the following are 

equivalent. 

(i) X is W-connected. 

(ii) X and υ are the only subsets of X which are both W-open 

and W-closed. 

(iii) Each W-continuous map of X into a discrete space Y with 

at least two points is a constant map. 

Proof: (i) ⇒(ii) : 

Let O be any W-open and W-closed subset of X. Then O
C
is 

both W-open and W-closed. Since X is disjoint union of the 

W-open sets O and O
C
implies from the hypothesis of (i) that 

either O = υ or O = X. 

(ii) ⇒(i) : 

Suppose that X = A∪B where A and B are disjoint non-empty 

W-open  subsets of X. Then A is both W-open and W-closed. 

By assumption A = υ or X. Therefore X is W-connected. 

(ii) ⇒(iii) : 

Let f :X → Y be a W-continuous map. Then X is covered by 

W-open and W-closed covering  

{f
−1

(Y ) : y ∈(Y )}. By assumption f
−1

(y) = υ or X for each y 

∈Y. If f−1(y) = υ for ally ∈Y , then f fails to be a map. Then 

there exists only one point y ∈Y such that f
−1

(y) ≠υ and hence  

f
−1

(y) = X. This shows that f is a constant map. 

(iii) ⇒(ii) : 

Let O be both W-open and W-closed in X. Suppose O ≠υ. Let 

f :X → Y be a W-continuous map defined by f(O) = y and 

f(O
C
) = {w} for somedistinct points y and w inY . 

By assumption f  is constant. Therefore  we have O = X. 

Theorem 4.6:If f :X → Y is a W-continuous and X is W-

connected, then Y is connected. 

Proof: Suppose that Y is not connected. Let Y = A∪B where 

A and B are disjoint non-empty open set in Y . Since f is W-

continuous and onto, X = f 
−1

(A) ∪f 
−1

(B) where f 
−1

(A) and 

f
−1

(B) are disjoint non-empty W-opensets in X. This 

contradicts the fact that X is W-connected. Hence Y is 

connected. 

Theorem 4.7:If f :X → Y is a W-irresolute surjection and X is 

W-connected, then Y is W-connected. 

Proof: Suppose that Y is not W-connected. Let Y =A∪B 

where A andB are disjoint non-empty W-open set in Y. Since f 

is W-irresolute and onto, X =  f
−1

(A)∪f 
−1

(B) where  f
−1

(A) 

andf
−1

(B) are disjoint non-empty W-open sets in X. This 

contradicts the fact that X is W-connected. Hence Y is 

connected. 

Theorem 4.8:In a topological space (X, τ) with at least two 

points, if W-O(X, τ) = W-CL(X, τ) then X is not W-connected. 

Proof: By hypothesis we have W-O(X, τ) = W-CL(X, τ) and 

by Remark 2.6 we have every closed set is W-closed, there 

exists some non-empty proper subset of X which is both W-

open and W-closed in X. So by last Theorem 4.5 we have X is 

not W-connected. 

Definition 4.9:A topological space X is said to be TW-space if 

every W-closed subset of X is closed subset of X. 

Theorem 4.10:Suppose that X is a TW-space then X is 

connected if and only if it is W-connected. 

Proof: Suppose that X is connected. Then X can not be 

expressed as disjoint union of two non-empty proper subsets of 

X. Suppose X is not a W-connected space. Let A and B be any 

two W-open subsets of X such that X = A∪B, where A∩B = υ 

and A⊂X, B⊂X. Since X is TW-space and A,Bare W-

open,A,Bare open subsets of X, which contradicts that X is 

connected.Therefore X is W-connected. Conversely, every 

open set is W-open. Therefore every W-connected space is 

connected. 

Theorem 4.11:If the W-open sets C and D form a separation 

of X and if Y is W-connected subspace of X, then Y lies 

entirely within C or D. 

Proof: Since C and D are both W-open in X the sets C∩Y and 

D∩Y are W-open in Y these two sets are disjoint and their 

union is Y. If they wereboth non-empty, they would constitute 

a separation of Y. Therefore, one ofthem is empty. Hence Y 

must lie entirely in C or in D. 

Theorem 4.12:Let A be a W-connected subspace of X. If 

A⊂B⊂W-Cl(A) then B is also W-connected. 

Proof: Let A be W-connected and let A⊂B⊂W-Cl(A). 

Suppose that B = C∪D is a separation of B by W-open sets. 

Then by Theorem 4.11 above A must lie entirely in C or in 

D.Suppose that A ⊂C, then W-Cl(A) ⊆W-Cl(C). Since W-

Cl(C) and D are disjoint, B cannot intersect D. This contradicts 

the fact that D is non-empty subset of B. So D = υ which 

implies B is W-connected. 
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