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ABSTRACT 

 
In this paper we introduce and investigate new class of maps called pgprw-

homeomorphism and several characterization and some of their properties. Also we 

investigate it’s relationship with other types of functions. 
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I.  INTRODUCTION 

 

The notion homeomorphism plays a very important role in topology. By definition a 

homeomorphism between two topological spaces X and Y is a bijective map f: X →  Y when 

both f and f -1 are continuous map. Wali and Vivekananda Dembre1 introduced Pgprw – closed 

set in topological spaces. Wali  and Vivekananda Dembre2 introduced pgprw–continuous map, 

in topological spaces. In this paper we introduce the concept of  pgprw – homeomorphism and 

study the relationship between homeomorphism, pgprw – homeomorphism,gpr 

homeomorphism, gp homeomorphism & gspr homeomorphism. 

 

II. PRELIMINARIES 

 

    Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological 

space on which no separation axioms are assumed unless explicitly stated. For a subset A of a 

space X, Cl(A), Int(A), Ac , P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, 

Compliment of A,  pre-closure of A and pre-interior of (A) in X respectively. 

http://www.compmath-journal.org/
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Definition 2.1: A subset A of a topological space (X, τ) is called 

 

(i)  A pre generalized pre regular ωeakly closed set(briefly pgprω-closed set)1 if pCl(A)U 

whenever AU and U is rgα open in (X, τ). 

(ii)  Pre generalized pre-regular ωeakly open(briefly pgprω-open)2 set in X if Ac is pgprω-

closed in X. 

(iii)  Regular open set  if  A = int(clA))4 and a regular closed set if A = cl(int(A)).  

(iv) Generalized pre regular closed set(briefly gpr-closed)5 if pcl(A)U whenever AU and 

U is regular open in X. 

(v)  Generalized semi pre regular closed (briefly gspr-closed) set12 if spcl(A)⊆U whenever 

A⊆U and U is  regular open in X. 

(vi) Generalized pre closed (briefly gp-closed) set7  if  pcl(A)⊆U whenever A⊆U and U is  

open in X. 

 

Defintion 2.2:  A map f:(X, 𝜏)   →  (Y,  σ)  )  is called 

 

(i)   pgprw-continuous map3 if the inverse image of every closed in Y is pgprw closed set in X. 

(ii)  regular-continuous map10 if the inverse image of every closed in Y is regular closed set 

in X. 

(iii)  gpr-continuous map8 if the inverse image of every closed in Y is gpr closed set in X. 

(iv)  gspr-continuous map6 if the inverse image of every closed in Y is gspr closed set in X. 

(v)  gp-continuous map11 if the inverse image of every closed in Y is gp closed set in X. 

 

Defintion2.3:  A map f:(X, 𝜏)  →  (Y,  σ)  is called 

 

(i)  gpr homomorphism5 if f & f -1 are gpr continuous map. 

(ii)  gspr homomorphism6 if f &f -1 are gspr continuous map. 

(iii)  gp homomorphism11 if f &f -1 are gp continuous map. 

(iv)  pgprw-closed  map9 if f(F) is pgprw-closed in (Y,  𝜎) for every closed set of (X,  τ ) & 

pgprw-open map  if f(F) is pgprw-open in (Y,  𝜎) for every open set of (X,  τ ). 

 
Theorem 2.4: 

 

(i)  Every pgprw-closed set is gspr-closed. 

(ii) Every pgprw-closed set is gp-closed. 

 

III. PGPRW-HOMEOMORPHISM IN TOPOLOGICAL SPACES 

 

Definition 3.1 : A bijection f : (X, 𝜏) → (Y, σ) is called pre generalized pre regular weakly 

homeomorphism if f and f -1 are pgprw-continuous map. We denote the family of all pgprw-

homeomorphisms of a topological space (X, 𝜏) onto itself by pgprw-h(X, 𝜏). 
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Example 3.2 : Consider X=Y={a,b,c,d} with topologies  τ={X,∅,{a},{b},{a,b},{a,b,c}}  and 

σ = {Y, ∅,{a},{b},{a,b},{a,b,c}}. Let f: X → Y be a map defined by f (a) = c, f (b) = a f(c) = 

b and f(d)=d. Then f is bijective, pgprw-continuous map and f -1 is pgprw –continuous map  

Hence f is pgprw–homeomorphism. 

 

Theorem 3.3: Every homeomorphism is pgprw-homeomorphism. 

 

Proof: Let f: (X, 𝜏)  → (Y, σ) be a homeomorphism. Then f and f -1 are continuous map and  

f is bijection. Since every continuous map is pgprw-continuous map,f and f -1 are pgprw-

continuous map.Hence f is pgprw-homeomorphism. 

 

Remark 3.4: The Converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.5 : Consider X=Y={a,b,c,d} with topologies τ={X,∅,{a},{b},{a,b},{a,b,c}}  and 

σ={Y,∅,{a},{b},{a,b},{a,b,c}}. Let f: X → Y be a map defined by f(a)=c,f(b)=a,f(c)=b,f(d)=d. 

Then f is pgprw-homeomorphism. But it is not homeomorphism since the inverse image of the 

closed set {c,d} in X is {b,d} is not closed in Y. 

 

Theorem 3.6: Every regular homeomorphism is pgprw-homeomorphism. 
 

Proof: The proof follows from the theorem 3.3 
 

Remark 3.7: The Converse of the above theorem need not be true as seen from the following 

example. 
 

Example 3.8 : Consider X=Y={a,b,c,d} with topologies τ={X,∅,{a},{b},{a,b},{a,b,c}}  and 

σ={Y,∅,{a},{b},{a,b},{a,b,c}}. Let f: X → Y be a map defined by f(a)=c,f(b)=a,f(c)=b,f(d)=d. 

Then f is pgprw-homeomorphism. But it is not regular homeomorphism since the inverse 

image of the closed set {c,d} in X is {b,d} is not regular closed in Y. 
 

Theorem 3.9: Every pgprw-homeomorphism is gpr homeomorphism. 
 

Proof: Let f: (X, 𝜏) → (Y, σ) be a pgprw homeomorphism.Then f and f -1 are pgprw- 

continuous map and f is bijection. Since every pgprw-continuous map is gpr-continuous map, 

f and f -1 are gpr-continuous map. Hence f is gpr-homeomorphism. 
 

Remark 3.10: The Converse of the above theorem need not be true as seen from the following 

example. 
 

Example 3.11: Consider X=Y={a,b,c} with topologies τ={X,∅,{a},{b,c}}  and 

σ = {Y, ∅,{a}}. Let f: X → Y be a map defined by f(a)=b,f(b)=a,f(c)=c. Then f is gpr-

homeomorphism. But it is not pgprw homeomorphism since the inverse image of the closed 

set {b,c} in X is {a,c} is not pgprw closed in Y. 
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Theorem 3.12: Every pgprw-homeomorphism is gspr-homeomorphism. 

 

Proof: The proof follows from the definition and fact that every pgprw-closed set is gspr-

closed [Theorem 2.4]. 

 

Remark 3.13: The Converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.14 : Consider X=Y={a,b,c} with topologies τ={X,∅,{a},{b,c}}  and 

σ={Y, ∅,{a}}. Let f: X → Y be the defined by f(a)=b,f(b)=a,f(c)=c. Then f is gspr-

homeomorphism.But it is not pgprw-homeomorphism since the inverse image of the closed 

set {b,c} in X is {a,c} is not pgprw-closed in Y. 

 

Theorem 3.15: Every pgprw-homeomorphism is gp-homeomorphism. 

 

Proof: The proof follows from the definition and fact that every pgprw-closed set is gp-closed 

[Theorem 2.4]. 
 

Remark 3.16: The Converse of the above theorem need not be true as seen from the following 

example. 
 

Example 3.17 : Consider X=Y={a,b,c} with topologies τ={X,∅,{a},{b,c}}  and 

σ = {Y, ∅,{a}}.Let f: X → Y be the defined by f(a)=b,f(b)=a,f(c)=c. Then f is gp-

homeomorphism.But it is not pgprw-homeomorphism since the inverse image of the closed 

set {b,c} in X is {a,c} is not pgprw-closed in Y. 
 

Theorem 3.18: Let f: (X, τ) → (Y, σ) be a bijective pgprw-continuous map. Then the 

following statements are equivalent. 
 

(i)  f is a pgprw-open map. 

(ii)  f is pgprw-homeomorphism. 

(iii) f is a pgprw-closed map. 
 

Proof: Suppose (i) holds. Let V be open in(X, τ) .Then by (i), f (V) is pgprw-open in (Y, σ). 

But 

f (V) = (f -1)-1(V) and so (f -1)-1(V) is pgprw-open in(Y, σ). This shows that f -1 is pgprw-

continuous map and it proves (ii). 
 

Suppose (ii) holds. Let F be a closed set in (X, τ). By (ii), f -1 is pgprw-continuous map and so 

(f -1)-1(V) (F) = f (F) is pgprw-closed in (Y, σ).This proves (iii). 
 

Suppose (iii) holds. Let V be open in(X, τ) .Then Vc is closed in (X, τ) By (iii), f (Vc) is pgprw-

closed in (Y, σ). But f (Vc) = (f (V)) c. This implies that (f (V))c is pgprw-closed in (Y, σ) and 

so  

f (V) is pgprw-open in (Y, σ). This proves (i). 
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Remark 3.19: The Composition of two pgprw-homeomorphism need not be a pgprw-

homeomorphism in general as seen from the following example. 
 

Example 3.20 :  Consider X=Y=Z= {a,b,c} with topologies  
τ = {X, ϕ,{a},{b},{a,b}}  and 𝜎 ={Y, ϕ,{a}}& 𝜇= { Z = ϕ,{a},{a,b},{a,c}}.  

Define f: (X, τ) →  (Y, 𝜎)  and g:(Y, 𝜎)  →   (Z, 𝜇) & gof: X  →   Z  are identity maps both   

f & g are pgprw homeomorphism but gof not pgprw-homeomorphism.Since closed set v={b} 

in Z, 

f -1(v)={b},which is not pgprw-closed set in X. 
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