

JESRT

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

[Dembre * *et al.*, 7(1): January, 2018] ICTM Value: 3.00

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

RW-SEPARATION AXIOMS IN TOPOLOGICAL SPACES

Vivekananda Dembre^{*1} and Sandeep N Patil²

^{*1}Assistant Professor, Department of Mathematics, Sanjay Ghodawat University,Kolhapur. ²Assistant Professor, Department of Civil Engineering, Sanjay Ghodawat Polytechnic, Kolhapur

DOI: 10.5281/zenodo.1158792

ABSTRACT

The aim of this paper is to introduce and study two new classes of spaces, namely Rw-normal and rw- regular spaces and obtained their properties by utilizing rw-closed sets.

KEYWORDS: Rw- closed set, Rw-continuous function, Rw-Separation axioms.

I. INTRODUCTION

Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spaces using semi-open sets. It was further studied by Noiri and Popa[10],Dorsett[6] and Arya[1]. Munshi[9], introduced g-regular and g- normal spaces using g-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of g* - preregular, g* - pre normal and w- normal, w-regular spaces in topological spaces. Recently, Benchalli et al [2,11] introduced and studied the properties of rw-closed sets and rw-continuous functions.

II. PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, and α -Cl(A), denote the Closure of A, Interior of A and Compliment of A and α -closure of A in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

- i. W-closed set[12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- ii. Generalized closed set(briefly g-closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2 : A topological space X is said to be a

- 1. g-regular[10], if for each g-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \notin V$.
- 2. α regular [4], if for each α closed set F of X and each point $x \notin F$, there exists disjoint α open sets U and V such that $F \subseteq V$ and $x \notin U$.
- 3. w-regular[12], if for each closed set F of X and each point x ∉ F, there exists disjoint w-open sets U and V such that F⊆U and x ∈ V.

Definition 2.3. A topological space X is said to be a

- 1. g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- 2. α -normal [4], if for any pair of disjoint α closed sets A and B, there exists dis-joint α -open sets U and V such that A \subseteq U and B \subseteq V.
- 3. w-normal [12], if for any pair of disjoint w -closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

 ISSN: 2277-9655

 [Dembre * et al., 7(1): January, 2018]

 ICTM Value: 3.00

 Definition 2.4: [2] A topological space X is called T_{rw} - space if every rw-closed set in it is closed set.

Definition 2.5: A map f: $(X, \tau) \longrightarrow (Y, \tau)$ is said to be

- i. rw-continuous map[11] if $f^{-1}(V)$ is a rw-closed set of (X, τ) for every closed set V of (Y, τ) .
- ii. rw-irresolute map[11] if $f^{-1}(V)$ is a rw-closed set of (X, τ) for every rw-closed set V of (Y, τ) .

III. RW -REGULAR SPACES

In this section, we introduce a new class of spaces called rw-regular spaces using Rw-closed sets and obtain some of their characterizations.

Definition 3.1. A topological space X is said to be rw-regular if for each rw closed set F and a point $x \notin F$, there exist disjoint open sets G and H such that F \subseteq G and x ϵ H. We have the following interrelationship between rw-regularity and regularity.

Theorem 3.2. Every rw-regular space is regular.

Proof: Let X be a rw-regular space. Let F be any closed set in X and a point $x \notin X$ such that $x \notin F$. By [2], F is rw-closed and $x \notin F$. Since X is a rw-regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a regular space.

Remark 3.3. If X is a regular space and T_{rw} space, then X is rw regular We have the following characterization.

Theorem 3.4. The following statements are equivalent for a topological space X

(i) X is a rw regular space

(ii) For each x ϵ X and each rw-open neighbourhood U of x there exists an open neighbourhood N of x such that $cl(N)\subseteq U$.

Proof: (i) \rightarrow (ii): Suppose X is a rw regular space. Let U be any rw neighbour-hood of x. Then there exists rw open set G such that x ϵ G \subseteq U. Now X –G is rw closed set and x \notin X - G. Since X is rw regular, there exist open sets M and N such that X -G \subseteq M, x ϵ N and M \cap N = φ and so N \subseteq X-M. Now cl(N) \subseteq cl(X -M) = X -M and X -M \subseteq M. This implies X -M \subseteq U. Therefore cl(N) \subseteq U.

(ii) \rightarrow (i): Let F be any rw closed set in X and x ϵ X -F and X - F is a Rw-open and so X - F is a rw-neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that x ϵ N and cl(N) \subseteq X - F. This implies F \subseteq X - cl(N) is an open set containing F and N \cap f(X - cl(N)= φ . Hence X is rw- regular space. We have another characterization of rw-regularity in the following.

Theorem 3.5: A topological space X is rw-regular if and only if for each rw-closed set F of X and each x ϵ X - F there exist open sets G and H of X such that x ϵ G, F \subseteq H and cl(G) \cap cl(H) = \emptyset .

Proof: Suppose X is rw-regular space. Let F be a rw-closed set in X with $x \notin F$. Then there exists open sets M and H of X such that $x \in M$, $F \subseteq H$ and $M \cap H = \emptyset$. This implies $M \cap cl(H) = \emptyset$. As X is rw-regular, there exist open sets U and V such that $x \in U$, $cl(H) \subseteq V$ and $U \cap V = \emptyset$. so $cl(U) \cap V = \emptyset$. Let $G = M \cap U$, then G and H are open sets of X such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(H) = \emptyset$.

Conversely, if for each rw-closed set F of X and each x ϵ X -F there exists open sets G and H such that x ϵ G, F \subseteq H and cl(H) \cap cl(H) = \emptyset . This implies x ϵ G, F \subseteq H and G \cap H = \emptyset . Hence X is rw- regular. Now we prove that rw- regularity is a heriditary property.

Theorem 3.6. Every subspace of a rw-regular space is rw-regular.

Proof: Let X be a rw- regular space. Let Y be a subspace of X. Let $x \in Y$ and F be a rw-closed set in Y such that $x \notin F$. Then there is a closed set and so rw-closed set A of X with $F = Y \cap A$ and $x \notin A$. Therefore we have $x \in X$, A is rw – closed in X such that $x \notin A$. Since X is rw- regular, there exist open sets G and H such that $x \notin G$, $A \subseteq H$ and $G \cap H = \varphi$. Note that $Y \cap G$ and $Y \cap H$ are open sets in Y. Also $x \in G$ and $x \in Y$, which implies $x \in Y \cap G$ and $A \subseteq H$ implies $Y \cap G \subseteq Y \cap H$, $F \subseteq Y \cap H$. Also $(Y \cap G) \cap (Y \cap H) = \varphi$. Hence Y is rw-regular space.

[Dembre * *et al.*, 7(1): January, 2018]

We have yet another characterization of rw -regularity in the following.

Theorem 3.7 : The following statements about a topological space X are equivalent:

(i) X is rw -regular

(ii) For each x ϵ X and each rw-open set U in X such that x ϵ U there exists an open set V in X such that x ϵ V \subseteq cl(V) \subseteq U.

(iii) For each point x ϵX and for each rw-closed set A with x \notin A, there exists an open set V containing x such that $cl(V) \cap A = \varphi$.

Proof: (i) \rightarrow (ii): Follows from Theorem 3.5.

(ii) \rightarrow (iii): Suppose (ii) holds. Let $x \in X$ and A be an rw-closed set of X such that $x \notin A$. Then X - A is a rw-open set with $x \in X$ - A. By hypothesis, there exists an open set V such that $x \in V \subseteq cl(V) \subseteq X$ - A. That is $x \in V$, $V \subseteq cl(A)$ and $cl(A) \subseteq X$ - A. So $x \in V$ and $cl(V) \cap A = \varphi$.

(iii) \blacktriangleright (i): Let x ϵ X and U be an rw-open set in X such that x ϵ U. Then X - U is an rw closed set and x \notin X - U. Then by hypothesis, there exists an open set V containing x such that $cl(A) \cap (X - U) = \dot{A}$. Therefore x ϵ V, $cl(V) \subseteq U$ so x $\epsilon V \subseteq cl(V) \subseteq U$.

The invariance of rw-regularity is given in the following.

Theorem 3.8: Let $f: X \rightarrow Y$ be a bijective, rw-irresolute and open map from a rw- regular space X into a topological space Y, then Y is rw-regular.

Proof: Let $y \in Y$ and F be a rwclosed set in Y with $y \notin F$. Since F is rw- irresolute, $f^{-1}(F)$ is rw-closed set in X. Let f(x) = y so that $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again X is rw-regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$, $U \cap V = \varphi$. Since f is open and bijective, we have $y f(U), F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\varphi) = \varphi$. Hence Y is rw-regular space.

Theorem 3.9. Let $f: X \to Y$ be a bijective, rw-closed and open map from a topological space X into a rw-regular space Y. If X is T_{rw} space, then X is rw-regular.

Proof: Let $x \in X$ and F be an rw-closed set in X with $x \notin F$. Since X is T_{rw} space, F is closed in X. Then f(F) is rwclosed set with $f(x) \notin f(F)$ in Y, since f is rw-closed. As Y is rw-regular, there exist open sets U and V such that $x \in U$ and $f(x) \in U$ and $f(F) \subseteq V$. Therefore $x \in f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Hence X is rw-regular space.

Theorem 3.10. If $f: X \rightarrow Y$ is w-irresolute, continuous injection and Y is rw-regular space, then X is rw- regular.

Proof: Let F be any closed set in X with $x \notin F$. Since f is w-irresolute, f is rw- closed set in Y and $f(x) \in f(F)$. Since Y is rw- regular, there exists open sets U and V such that $f(x) \in U$ and $f(F) \subseteq V$. Thus $x \in f^{-1}(U), F \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Hence X is rw- regular space.

IV. RW-NORMAL SPACES

In this section, we introduce the concept of rwnormal spaces and study some of their characterizations.

Definition 4.1. A topological space X is said to be rw-normal if for each pair of disjoint rw- closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$ We have the following interrelationship.

Theorem 4.2. Every rw-normal space is normal.

Proof: Let X be a rw-normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are rwclosed sets in X. Since X is rw-normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is normal.

Remark 4.3. The converse need not be true in general as seen from the following example.

http://www.ijesrt.com

[Dembre * *et al.*, 7(1): January, 2018] ICTM Value: 3.00 ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

Example 4.4. Let $X = Y = \{a,b,c,d\}, \tau = \{X, \emptyset, \{a\}, \{c\}, \{a,c\}, \{b,c,d\}\}$ Then the space X is normal but not rw - normal, since the pair of disjoint rw - closed sets namely, $A = \{a,d\}$ and $B = \{b,c\}$ for which there do not exists disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$.

Remark 4.5.:If X is normal and T _{rw}-space, then X is rw-normal. Hereditary property of rw- normality is given in the following.

Theorem 4.6. A rw - closed subspace of a rw - normal space is rw -normal. We have the following characterization.

Theorem 4.7. The following statements for a topological space X are equivalent:

(i) X is rw- normal

(ii) For each $\ensuremath{\mathsf{rw}}\xspace$ - closed set A and each $\ensuremath{\mathsf{rw}}\xspace$ - open set U such that

A \subseteq U, there exists an open set V such that A \subseteq V \subseteq cl(V) \subseteq U

(iii) For any rw-closed sets A, B, there exists an open set V such that $A \subseteq V$ and $cl(V) \cap B = \varphi$.

(iv) For each pair A, B of disjoint rw-closed sets there exist open sets U and V such that $A \subseteq U, B \subseteq V$ and $cl(U) \cap cl(V) = \varphi$.

Proof: (i) \rightarrow (ii): Let A be a rw-closed set and U be a rw-open set such that A \subseteq U.Then A and X - U are disjoint rw-closed sets in X. Since X is rw-normal, there exists a pair of disjoint open sets V and W in X such that A \subseteq V and X - U \subseteq W. Now X - W \subseteq X - (X - U), so X - W \subseteq U also V \cap W = φ . implies V \subseteq X - W, so cl(V) \subseteq cl(X - W) which implies cl(V) \subseteq X - W. Therefore cl(V) \subseteq X - W \subseteq U. So cl(V) \subseteq U. Hence A \subseteq V \subseteq cl(V) \subseteq U.

(ii) \rightarrow (iii): Let A and B be a pair of disjoint rwclosed sets in X. Now $A \cap B = \varphi$, so $A \subseteq X - B$, where A is rwclosed an $\subseteq d X - B$ is rw-open. Then by (ii) there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq X - B$. Now $cl(V) \subseteq X - B$ implies $cl(V) \cap B = \varphi$. Thus $A \subseteq V$ and $cl(V) \cap B = \varphi$.

(iii) \rightarrow (iv): Let A and B be a pair of disjoint rw-closed sets in X. Then from (iii) there exists an open set U such that A \subseteq U and cl(U) \cap B = φ . Since cl(V) is closed, so rw-closed set. Therefore cl(V) and B are disjoint rwclosed sets in X. By hypothesis, there exists an open set V, such that B \subseteq V and cl(U) \cap cl(V) = φ .

(iv) \rightarrow (i): Let A and B be a pair of disjoint rw-closed sets in X. Then from (iv) there exist an open sets U and V in X such that A \subseteq U, B \subseteq V and cl(U) \cap cl(V) = φ . So A \subseteq U, B \subseteq V and U \cap V = φ . Hence X rw-normal.

Theorem 4.8. Let X be a topological space. Then X is rw-normal if and only if for any pair A, B of disjoint rwclosed sets there exist open sets U and V of X such that $A \subseteq U, B \subseteq V$ and $cl(U) \cap cl(V) = \varphi$.

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

(i) X is normal

(ii) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V such that $A \subseteq U, B \subseteq V$.

(iii) For any closed set A and any open set V such that $A \subseteq V$, there exists an rw -open set U of X such that $A \subseteq U \subseteq \alpha cl(U) \subseteq V$.

Proof:

(i) \rightarrow (ii): Suppose X is normal. Since every open set is rw-open [2], (ii) follows.

(ii) \rightarrow (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are disjoint closed sets. By (ii), there exist disjoint rw- open sets U and W such that $A \subseteq U$ and X - V $\subseteq W$, since X - V is closed, so rw - closed. From [2], we have X - V $\subseteq \alpha$ -int(W) and U $\cap \alpha$ -int(W) = φ . and so we have α -cl(U) $\cap \alpha$ -int(W) = φ . Hence $A \subseteq U \subseteq \alpha$ -cl(U) $\subseteq X - \alpha$ -int(W) $\subseteq V$. Thus $A \subseteq U \subseteq \alpha$ -cl(U) $\subseteq V$.

(iii) \rightarrow (i): Let A and B be a pair of disjoint closed sets of X.Then $A \subseteq X - B$ and X -B is open. There exists a rw - open set G of X such that $A \subseteq G \subseteq \alpha$ -cl(G) $\subseteq X$ -B. Since A is closed, it is w- closed, we have $A \subseteq \alpha$ - int(G). Take U = int(cl(int(α -int(G)))) and V = int(cl(int($X - \alpha$ -cl(G)))). Then U and V are disjoint open sets of X such that $A \subseteq U$ and $B \subseteq V$. Hence X is normal.

[Dembre * *et al.*, 7(1): January, 2018]

IC[™] Value: 3.00

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

We have the following characterization of rw - normality and rw- normality.

Theorem 4.10: Let X be a topological space. Then the following are equivalent:

(i) X is α -normal.

(ii) For any disjoint closed sets A and B, there exist disjoint rw - open sets U and V such that $A \subseteq U, B \subseteq V$ and $U \cap V = \varphi$.

Proof:

(i) \rightarrow (ii): Suppose X is α - normal. Let A and B be a pair of disjoint closed sets of X. Since X is α -normal, there exist disjoint α – open sets U and V such that A \subseteq U and B \subseteq V and U \cap V = φ .

(ii) \rightarrow (i):Let A and B be a pair of disjoint closed sets of X. The by hypothesis there exist disjoint rw- open sets U and V such that A \subseteq U and B \subseteq V and U \cap V = φ . Since from [2], A $\subseteq \alpha$ -intU and B $\subseteq \alpha$ - int(V)and α -int U $\cap \alpha$ -intV = φ . Hence X is α -normal.

Theorem 4.11. Let X bea α - normal, then the following hold good:

(i)For each closed set A and every rw - open set B such that $A \subseteq B$ ther exists a α open set U such that $A \subseteq U \subseteq \alpha$ cl(U) $\subseteq B$.

(ii) For every rw-closed set A and every open set B containing A, there exist a α -open set U such that $A \subseteq U \subseteq \alpha$ cl(U) $\subseteq B$

V. REFERENCES

- [1] S.P. Arya and T.M. Nour, Characterization of s- normal spaces, Indian. J.Pure and Appl. Math., 21(8),(1990), 717-719.
- [2] R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university dharwad(2007)
- [3] S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g*- Pre Regular and g*-Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399-2408.
- [4] S.S. Benchalli and P.G. Patil, Some New Continuous Maps in Topological Spaces, Journal of Advanced Studies in Topology 2/1-2 (2009) 53-63
- [5] R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms inTopological Spaces, Ph.D. thesis, Bharatiyar University, Coimbatore (1994).
- [6] C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- [7] S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 22 (1978) 27-28.
- [8] B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- [9] T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci.Kochi Univ. Math 20 (1999)67-74.Journal of New Results in Science 5 (2014) 96-103 103
- [10] R.S.Wali, on some topics in general and fuzzy topological spaces Ph.d thesis Karnatak university dharwad(2007
- [11] M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps inTopological and Bitopological spaces , Ph.D. Thesis, Bharathiar University, Coimbatore (2002).
- [12] R.S.Wali and Vivekananda Dembre; On Pre Generalized Pre Regular Weakly Closed Sets in Topological Spaces ;Journal of Computer and Mathematical Sciences, Vol.6(2),113-125, February 2015.

CITE AN ARTICLE

Dembre, V., & Patil, S. N. (n.d.). RW-SEPARATION AXIOMS IN TOPOLOGICAL SPACES. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 7(1), 544-548