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ABSTRACT 
The aim of this paper is to introduce and study two new classes of spaces,namely Generalized pre closed-normal and 
Generalized pre closed-regular spaces and obtained their properties by utilizing  Generalized pre closed-closed sets.  
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1. INTRODUCTION 
 
H. Maki, J.Umehara and T.Noiri,Introduced gp-closed sets and , Benchalli et al  and Shik John studied the concept of 
g* - pre-regular, g*-pre normal and w- normal, w-regular spaces in topological spaces. Recently, Benchalli et al 
introduced and studied the properties of  regular weakly closed sets and regular weakly continuous functions. 
 
2. PRELIMINARIES 
 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no 
separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), Ac , and 𝛼-Cl(A), 
denote the Closure of A, Interior of A and Compliment of A and 𝛼-closure of A in X respectively. 
 
Definition 2.1: A subset A of a topological space (X, τ) is called 

(i) W-closed set if cl(A) ⊆ U whenever A⊆ U and U is semi-open in X. 
(ii) Generalized closed set(briefly g-closed) [7] if cl(A)⊆U  whenever A ⊆ U and U is open in X. 

 
Definition 2.2: A topological space X is said to be a 

(1) α - regular ,if for each 𝛼 - closed set F of X and each point x ∉ F, there exists disjoint  α - open sets U and V 
such that F ⊆ V and x 𝜖 U. 

(2)  w-regular, if for each closed set F of X and each point x ∉ F, there exists disjoint w-open sets U and V such 
that F⊆U and x𝜖 V. 

(3)  g-regular, if for each g-closed set F of X and each point x ∉F,there exists disjoint open sets U and V such that 
F⊆U and  x 𝜖 V . 

 
Definition 2.3. A topological space X is said to be a 

(1) α-normal, if for any pair of disjoint α − closed sets A and B, there exists disjoint  𝛼 -open sets U and V such 
that A⊆U and B⊆V. 

(2) w-normal, if for any pair of disjoint  w -closed sets A and B, there exists disjoint open sets U and V such that 
A ⊆ U and B⊆V. 

 
Definition 2.4: A topological space X is called TGeneralized pre closed - space if every Generalized pre closed-closed set in it 
is closed set. 
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Definition 2.5: A map f: (X, τ)         (Y, τ) is said to be  

(i) Generalized pre closed-continuous map if f -1(V)is a Generalized pre closed set of (X, τ) for every closed set V 
of (Y, τ). 

(ii) Generalized pre closed-irresolute map if f -1(V)is a Generalized pre closed set of (X, τ) for every Generalized 
pre closed set V of (Y, τ). 

 
3. GENERALIZED PRE CLOSED -REGULAR SPACES 
 
In this section, we introduce a new class of spaces called Generalized pre closed-regular spaces using Generalized pre 
closed sets and obtain some of their characterizations. 
 
Definition 3.1: A topological space X is said to be Generalized pre closed-regular if for each Generalized pre closed set 
F and a point x ∉ F, there exist disjoint open sets G and H such that F⊆G and x 𝜖 H. 
 
We have the following interrelationship between Generalized pre closed-regularity and regularity. 
 
Theorem 3.2: Every Generalized pre closed-regular space is regular. 
 
Proof: Let X be a Generalized pre closed-regular space. Let F be any closed set in X and a point x∉X such that x∉F. 
Since, F is Generalized pre closed and x ∉ F. Since X is a Generalized pre closed-regular space, there exists a pair of 
disjoint open sets G and H such that F ⊆ G and x 𝜖 H. Hence X is a regular space. 
 
Remark 3.3: If X is a regular space and TGeneralized pre closed space, then X is Generalized pre closed regular We have the 
following characterization. 
 
Theorem 3.4; The following statements are equivalent for a topological space X 

(i) X is a Generalized pre closed regular space 
(ii) For each x 𝜖 X and each Generalized pre open neighbourhood U of x there exists an open neighbourhood N of 

x such that cl(N)⊆U. 
 
Proof: (i) implies (ii): Suppose X is a Generalized pre closed regular space. Let U be any Generalized pre open 
neighbourhood of x. Then there exists Generalized pre open set G such that x 𝜖 G ⊆U. Now X –G is Generalized pre 
closed set and x ∉ X - G. Since X is Generalized pre closed regular, there exist open sets M and N such that X-G⊆M, 
x 𝜖 N and M ∩ N = 𝜑 and so N ⊆X-M. Now cl(N) ⊆cl(X -M) = X-M and X -M ⊆ M. This implies X-M⊆ U. Therefore  
cl(N)⊆U. 
(ii) implies (i): Let F be any Generalized pre closed set in X and x 𝜖 X -F and X - F is a Generalized pre open and so X 
- F is a Generalized pre closed-neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that 
x 𝜖 N and cl(N)⊆X - F. This implies F⊆X - cl(N) is an open set containing F and N ∩ f(X - cl(N)= 𝜑 . Hence X is 
Generalized pre closed- regular space. 
 
We have another characterization of  Generalized pre closed-regularity in the following. 
 
Theorem 3.5: A topological space X is Generalized pre closed-regular if and only if for each Generalized pre closed 
set F of X and each x 𝜖 X - F there exist open sets G and H of X such that x 𝜖 G, F⊆H and cl(G) ∩ cl(H) = ∅. 
 
Proof: Suppose X is Generalized pre closed-regular space. Let F be a Generalized pre closed-set in X with x ∉ F.Then 
there exists open sets M and H of X such that x 𝜖 M, F ⊆H and M∩H =∅. This implies M∩cl(H) = ∅.As X is 
Generalized pre closed-regular, there exist open sets U and V such that x 𝜖 U, cl(H)⊆V and U∩V = ∅. so cl(U)∩V = 
∅.Let G = M ∩ U, then G and H are open sets of X such that x𝜖G, F ⊆ H and cl(H) ∩  cl(H) =∅ . 
 
Conversely, if for each Generalized pre closed set F of X and each x 𝜖 X -F there exists open sets G and H such that x 𝜖 
G, F⊆ H and cl(H) ∩cl(H) = ∅ .This implies x 𝜖 G,F⊆H and G∩H =  ∅. Hence X is Generalized pre closed- regular. 
 
Now we prove that Generalized pre closed- regularity is a heriditary property. 
 
Theorem 3.6: Every subspace of a Generalized pre closed-regular space is Generalized pre closed-regular. 
 
Proof: Let X be a Generalized pre closed- regular space. Let Y be a subspace of X. Let x 𝜖 Y and F be a Generalized 
pre closed set in Y such that x∉F. Then there is a closed set and so Generalized pre closed set A of X with F = Y ∩ A 
and x ∉A. Therefore we have x 𝜖 X, A is Generalized pre closed in X such that x∉A. Since X is Generalized pre closed  
regular, there exist open sets G and H such that x𝜖G, A⊆H and G∩H = 𝜑. Note that Y ∩ G and Y ∩ H are open sets in 
Y .Also x 𝜖 G and x 𝜖 Y, which implies x 𝜖 Y ∩G and A ⊆ H implies Y∩ G ⊆Y ∩ H,F⊆Y  ∩ H. Also (Y  ∩ G) ∩  
(Y∩H) = 𝜑. Hence Y is Generalized pre closed-regular space. 
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We have yet another characterization of Generalized pre closed -regularity in the following. 
 
Theorem 3.7: The following statements about a topological space X are equivalent: 

(i) X is Generalized pre closed -regular 
(ii) For each x 𝜖 X and each Generalized pre open set U in X such that x 𝜖 U there exists an open set V in X such 

that x 𝜖 V⊆cl(V)⊆U. 
(iii) For each point x 𝜖X and for each Generalized pre closed set A with x ∉ A, there exists an open set V 

containing x such that cl(V)∩A = 𝜑. 
 
Proof: (i)implies (ii): Follows from Theorem 3.5. 
 
(ii)implies (iii): Suppose (ii) holds. Let x 𝜖 X and A be an Generalized pre closed set of X such that x ∉ A.Then X - A 
is a Generalized pre open set with x 𝜖 X -A. By hypothesis, there exists an open set V such that x 𝜖 V ⊆ cl(V )⊆ X - A. 
That is x 𝜖 V , V⊆ cl(A) and cl(A)  ⊆  X - A. So x  𝜖 V and cl(V)∩A = 𝜑. 
 
(iii)implies(i): Let x 𝜖 X and U be an Generalized pre-open set in X such that x 𝜖 U. Then X - U is an Generalized pre 
closed set and x∉  X - U. Then by hypothesis, there exists an open set V containing x such that cl(A)∩(X -U) = Á. 
Therefore x 𝜖 V , cl(V )⊆U so x 𝜖 V⊆ cl(V)⊆ U. 
 
The invariance of Generalized pre closed-regularity is given in the following. 
 
Theorem 3.8:  Let f : X       Y be a bijective, Generalized pre closed-irresolute and open map from a  Generalized pre 
closed- regular space X into a topological space Y , then Y is Generalized pre closed-regular. 
 
Proof: Let y𝜖Y and F be a Generalized pre closed set in Y with y ∉ F. Since F is Generalized pre closed- irresolute, f  - 

1(F) is Generalized pre closed set in X. Let f(x) = y so that x = f -1 (y) and x ∉  f - 1(F). Again X is Generalized pre 
closed regular space, there exist open sets U and V such that x 𝜖 U and f - 1(F) ⊆G, U ∩  V = 𝜑. Since f is open and 
bijective, we have y ϵ f(U),F ⊆ f(V ) and f(U) ∩ f(V) = f(U∩V ) = f(𝜑) = 𝜑 . Hence Y is Generalized pre closed-regular 
space. 
 
Theorem 3.9: Let f : X       Y be a bijective, Generalized pre closed and open map from a topological space X into a 
Generalized pre closed-regular space Y . If X is TGeneralized pre closed space, then X is  Generalized pre closed-regular. 
 
Proof: Let x 𝜖 X and F be an Generalized pre closed set in X with x  ∉ F. Since X is TGeneralized pre closed space,F is closed 
in X. Then f(F) is Generalized pre closed set with f(x)  ∉ f(F) in Y, since f is  Generalized pre closed. As Y is 
Generalized pre closed-regular, there exist open sets U and V such that x 𝜖  U and f(x) 𝜖 U and f(F) ⊆V. Therefore       
x 𝜖 f - 1(U) and F  ⊆ f - 1(V ).  Hence X is Generalized pre closed-regular space. 
 
heorem 3.10: If f : X       Y is w-irresolute, continuous injection and Y is Generalized pre closed-regular space,then X 
is Generalized pre closed- regular. 
 
Proof: Let F be any closed set in X with x∉ F. Since f is w-irresolute, f is Generalized pre closed- set in Y and f(x) 𝜖 
f(F). Since Y is Generalized pre closed- regular,there exists open sets U and V such that f(x)  𝜖 U and  f(F) ⊆ V . Thus 
x 𝜖 f - 1(U),F  ⊆ f - 1(V ) and f -1 (U) ∩ f -1(V ) = 𝜑. Hence X is Generalized pre closed- regular space. 
 
4. GENERALIZED PRE CLOSED-NORMAL SPACES 
 
In this section, we introduce the concept of Generalized pre closed normal spaces and study some of their 
characterizations. 
 
Definition 4.1: A topological space X is said to be Generalized pre closed-normal if for each pair of disjoint 
Generalized pre closed-sets A and B in X, there exists a pair of disjoint open sets U and V in X such that A ⊆ U and B 
⊆V  
 
We have the following interrelationship. 
 
Theorem 4.2: Every Generalized pre closed-normal space is normal. 
 
Proof: Let X be a Generalized pre closed-normal space. Let A and B be a pair of disjoint closed sets in X. Since, A and 
B are Generalized pre closed sets in X. Since X is Generalized pre closed-normal, there exists a pair of disjoint open 
sets G and H in X such that A  ⊆ G and B ⊆ H. Hence X is normal.  
 
Remark 4.3: The converse need not be true in general as seen from the following example. 
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Example 4.4: Let X = Y ={a,b,c,d},τ ={X, ∅,{a},{c},{a,c},{b,c,d}} Then the space X is normal but not Generalized 
pre closed - normal, since the pair of disjoint Generalized pre closed sets namely, A = {a,d} and B = {b,c} for which 
there do not exists disjoint open sets G and H such that A ⊆ G and B⊆ H. 
 
Remark 4.5: If X is normal and T Generalized pre closed-space, then X is Generalized pre closed-normal. 
 
Hereditary property of  Generalized pre closed- normality is given in the following. 
 
Theorem 4.6: A Generalized  pre closed subspace of a Generalized pre closed - normal space is Generalized pre closed 
-normal. We have the following characterization. 
 
Theorem 4.7: The following statements for a topological space X are equivalent: 

(i) X is Generalized pre closed- normal 
(ii) For each Generalized pre closed set A and each Generalized pre open set U such that A⊆U, there exists an 

open set V such that A⊆V⊆cl(V)⊆U 
(iii) For any Generalized pre closed sets A, B, there exists an open set V such that A⊆V and cl(V)∩B = 𝜑. 
(iv) For each pair A, B of disjoint  Generalized pre closed sets there exist open sets U and V such that A ⊆ U,B 

⊆V and cl(U) ∩ cl(V ) = 𝜑. 
 
Proof: (i) implies (ii): Let A be a Generalized pre closed set and U be a Generalized pre open set such that A⊆ U.Then 
A and X - U are disjoint Generalized pre closed sets in X. Since X is Generalized pre closed-normal , there exists a pair 
of disjoint open sets V and W in X such that A ⊆ V and X -U ⊆W. Now X -W ⊆ X - (X -U), so X -W⊆  U also V∩ W 
=  𝜑. implies V ⊆ X -W, so cl(V ) ⊆ cl(X -W) which implies cl(V )⊆X -W. Therefore cl(V) ⊆ X -W⊆  U. So cl(V ) ⊆ 
U. Hence A  ⊆ V ⊆ cl(V ) ⊆ U. 
 
(ii) implies (iii): Let A and B be a pair of disjoint Generalized pre closed sets in X. Now A∩ B = 𝜑,so A⊆X -B, where 
A is Generalized pre closed and X - B is Generalized pre closed-open . Then by (ii) there exists an open set V such that 
A⊆V⊆cl(V)⊆ X - B. Now cl(V) ⊆ X - B implies cl(V ) ∩  B = 𝜑 . Thus A⊆ V and cl(V) ∩  B = 𝜑. 
 
(iii) implies  (iv): Let A and B be a pair of disjoint Generalized pre closed sets in X.Then from (iii) there exists an open 
set U such that A⊆U and cl(U) ∩ B =  𝜑. Since cl(V ) is closed, so Generalized pre closed set.Therefore cl(V) and B 
are disjoint Generalized pre closed sets in X. By hypothesis, there exists an open set V, such that B⊆V and cl(U) ∩cl(V 
) = 𝜑. 
 
(iv) implies (i): Let A and B be a pair of disjoint Generalized pre closed sets in X.Then from (iv) there exist an open 
sets U and V in X such that A⊆U, B⊆V and cl(U) ∩ cl(V ) = 𝜑. So A ⊆ U , B⊆V and U∩V = 𝜑. Hence X  Generalized 
pre closed-normal. 
 
Theorem 4.8: Let X be a topological space. Then X is Generalized pre closed-normal if and only if for any pair A, B of 
disjoint Generalized pre closed sets there exist open sets U and V of X such that A⊆U,B⊆V and cl(U) ∩cl(V ) = 𝜑. 
 
Theorem 4.9: Let X be a topological space. Then the following are equivalent: 

(i) X is normal 
(ii) For any disjoint closed sets A and B, there exist disjoint Generalized pre closed - open sets U and V such that 

A⊆U,B⊆V . 
(iii) For any closed set A and any open set V such that A⊆ V, there exists an Generalized pre open set U of X such 

that A⊆U⊆ 𝛼cl(U)⊆V . 
 
Proof: (i)   implies     (ii): Suppose X is normal. Since every open set is Generalized pre open  
 
(ii) implies (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are 
disjoint closed sets. By (ii), there exist disjoint Generalized pre open sets U and W such that A⊆U and X - V ⊆ W, 
since X -V is closed, so Generalized pre closed. Since, we have  
X -V⊆ 𝛼-int(W) and U ∩  𝛼-int(W) = 𝜑.and so we have 𝛼-cl(U) ∩ 𝛼-int(W) = 𝜑. Hence A ⊆ U ⊆ 𝛼-cl(U) ⊆ X – 𝛼-
int(W)⊆V . Thus A ⊆ U ⊆ 𝛼-cl(U) ⊆ V . 
 
(iii) implies (i): Let A and B be a pair of disjoint closed sets of X.Then A ⊆ X - B and X -B is open. There exists a 
Generalized pre open set G of X such that A ⊆  G  ⊆ 𝛼-cl(G) ⊆ X-B. Since A is closed, it is w- closed, we have A ⊆ 𝛼 
-int(G). Take U = int(cl(int(𝛼-int(G)))) 
and V = int(cl(int(X –𝛼-cl(G)))). Then U and V are disjoint open sets of X such that A ⊆ U and B ⊆  V . Hence X is 
normal. 
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We have the following characterization of Generalized pre closed - normality and Generalized pre closed- normality. 
 
Theorem 4.10:  Let X be a topological space. Then the following are equivalent: 

(i) X is 𝛼-normal. 
(ii) For any disjoint closed sets A and B, there exist disjoint Generalized pre open sets U and V such that A⊆ 

U,B⊆V and U∩ V = 𝜑. 
 
Proof: (i) implies (ii): Suppose X is 𝛼- normal. Let A and B be a pair of disjoint closed sets of X. Since X is 𝛼 -
normal,there exist disjoint 𝛼 − open sets U and V such that A⊆U and B⊆V and U ∩ V = 𝜑. 
 
(ii) implies (i):Let A and B be a pair of disjoint closed sets of X.Then by hypothesis there exist disjoint Generalized pre 
open sets U and V such that A⊆U and B ⊆ V and U  ∩V = 𝜑 .Since , A⊆ 𝛼-intU and B ⊆ 𝛼 − int(V)and 𝛼 –int U∩ 𝛼 -
intV = 𝜑.  Hence X is 𝛼 -normal. 
 
Theorem 4.11: Let X be a 𝛼- normal, then the following hold good: 

(i) For each closed set A and every  Generalized pre open set B such that A⊆B ther exists a α open set U such 
that A⊆U⊆ α-cl(U)⊆ B. 

(ii) For every Generalized pre closed set A and every open set B containing A, there exist a α-open set U such that 
A⊆U⊆ α-cl(U)⊆B. 
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