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1. Introduction  
Stone [1] introduced and studied Regular open sets then Regular semi open sets, Pre-open 
sets, gspr closed sets, gpr closed sets, gp closed sets,Rg closed sets, rgα-closed sets, π-g-
closed sets, pgprw closed sets are introduced and studied by Cameron [2], Mashhour, 
Abd El-Monsef and El-Deeb [3], Govindappa Navalagi, Chandrashakarappa and 
Gurushantanavar [4], Gnanambal [5], Maki, Umehara and Noiri [6], Palaniappan and Rao 
[7], Vadivel and Vairamamanickam [8], Dontchev and Noiri [9], Wali and Vivekananda 
Dembre [10] respectively. 
 
2. Preliminaries 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote 
topological space on which no separation axioms are assumed unless explicitly stated. 
For a subset A of a space X, Cl(A), Int(A), Ac ,P-Cl(A) and P-int(A) denote the Closure 
of A, Interior of A , Compliment of A,  pre-closure of A and pre-interior of (A) in X 
respectively. 
 
Definition 2.1. A subset A of a topological space (X, τ ) is called  
(i) Regular open set [1] if  A = int(cl(A)) and a regular closed set if A = cl(int(A)). 

(ii)  Regular semi open set [2] if there is a regular open set U such that U ⊆A⊆ cl(U). 

(iii)  Pre-open set [3] if A ⊆ int(cl(A)) and  pre-closed set if cl(int(A)) ⊆ A.  
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(iv) Generalized semi pre regular closed (briefly,gspr-closed) set [4] if spcl(A)⊆U 
whenever A⊆U  and U is  regular open in X. 

(v) Generalized pre regular closed set (briefly, gpr-closed) [5] if pcl(A)⊆U whenever 
A⊆U and U is regular open in X. 

(vi) Generalized pre closed (briefly,gp-closed) set [6]  if  pcl(A)⊆U whenever A⊆U 
and U is  open  in X. 

(vii)  Regular generalized closed set(briefly,rg-closed) [7] if cl(A)⊆U whenever A⊆U 
and U is  regular open in X. 

(viii)  Regular-generalized-α closed set [8] if  α- cl(A)⊆U whenever A⊆U and U is 
regular  α -open in X. 

(ix) π-generalized closed set (briefly,πg-closed) [9] if cl (A)⊆ U whenever A⊆ U  and 
U is π-open in X. 

(x) pre generalized pre regular ωeakly closed set(briefly pgprω-closed) [10] if 
pCl(A)⊆U  whenever A⊆U and U is rgα-open in (X, τ). 

 
3. Pre generalized pre regular weakly closed sets in topological spaces 
Definition 3.1. [10] A subset A of  topological space (X, τ)  is called a pre generalized 
pre regular ωeakly closed sets (briefly pgprω-closed set)  if  pCl(A)⊆U whenever A ⊆ U 
and U is  rgα-open in (X, τ). 
 
Results 3.2. From [10]   
(i) Every closed set is pgprω-closed set in X. 
(ii)  Every regular closed set is pgprw-closed set in X. 
(iii)  Every  pgprw-closed set  is  gspr, gpr, gp,rg, πg closed set. 
(iv) The Union of two  pgprω -closed subsets of  X is  pgprω – closed set. 
(v) If  A is pre generalized pre regular weakly closed set in X and A⊆B⊆ pCl(A) then B 

is also pre generalized pre regular weakly closed set in X. 
(vi) If a subset A of  topological space X is a pre generalized pre regular weakly closed 

set in X; then pCl(A) - A does not contain any non empty rgα-closed set in X. 
 
4. Pre generalized pre regular weakly open sets 
Definition 4.1. A subset A of a topological space (X,τ) is called pre generalized pre 
regular ωeakly open (briefly pgprω-open) set in X if Ac  is pgprω-closed in X. 
 
The following theorem  is the analogue of  results 3.2   ( i) to  (iv). 
 
Theorem 4.2.  For any topological spaces (X,τ) we have the following . 
(i) Every open set is pgprω-open. 
(ii)  Every regular open set is pgprw closed set. 
(iii)  Every pgprω-open set is gspr, gpr,gp,rg, πg-open set. 
 
Theorem 4.3. If A and  B are pgprω-open sets in  space X, then A∩B is also an pgprω-
open in X. 
Proof:  Let A  and B be two pgprω-open sets in X. Then Ac  and  Bc  are pgprω-closed 
sets in X  by  Results 3.2 (iv) , Ac ∪ Bc is also  pgprω-closed set in X.  that is Ac ∪ Bc = 
(A∩B)c  is pgprω-closed set in X.Therefore A∩B is an pgprω-open set in X. 
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Remark 4.4.   The union of pgprω-open set in X is generally not an pgprω-open set in X. 
 
Example 4.5. Let X={a,b,c,d},   τ ={X,ϕ,{a},{c,d},{a,c,d}}. If A={c} B={a} Then A & 
B are pgprω-open set in X but A ∪ B={a,c} is not an pgprω-open set in X. 
 
Theorem 4.6.  A subset  A of a topological space X is pgprω-open iff  
 U⊆ p-int(A), whenever U is rgα-closed and U ⊆A. 
Proof: Assume that A is pgprω-open set in X and  U is  rgα-closed set of  (X, τ) s.t   
U ⊆A. Then X-A is a pgprω-closed set in (X, τ).Also X A⊆ X U and X U is rgα- 
open set of (X, τ).This implies that pcl(X A) ⊆  X U.But pcl(X A)=X p-int(A). 
Thus, X p int(A) ⊆ X U, so U ⊆ p-int(A).Conversely: Suppose U⊆ p-int (A) whenever 
U is  rgα-closed and U ⊆ A. To prove that A is pgprω-open set. Let F be rgα-open set of 
(X, τ) s.t  X A ⊆ F. Then X F ⊆ A. Now X F is rgα-closed set containing A,So;XF 
⊆ p-int(A),X p-int(A) ⊆ F but pcl(X A) = X p-int(A) ⊆ F. Thus  pcl(X A) ⊆ F i.e 
X A is pgprω-closed set & hence A is pgprω-open set. 
 
Theorem 4.7.  If p-int(A) ⊆ B ⊆A and A is pgprω-open set, then B is pgprω-open set. 
Proof: Let p-int(A)⊆B⊆A, Thus X A ⊆ X B ⊆ X p-int(A), i.e. 
X A ⊆ X B ⊆ cl(X A),Since X A is pgprω-closed set,then from result 3.2 (v) [10]  
X B is pgprω-closed set. Therefore B is pgprω-open set. 
 
Theorem 4.8.  If A ⊆ X is pgprω-closed then pcl(A) A is pgprω-open set. 
Proof: Let A be pgprω-closed. Let F ⊆ pcl(A) A, where F is rgα–closed; then from 
result 3.2 (vi) [10] we have F=ϕ .Therefore F ⊆ p-int (pcl(A) A) and Theorem4.6   
pcl(A) A is pgprω-open set.  
 
The reverse implication does not hold good.  
 
Example 4.9. Let X={a,b,c,d}, τ ={X,ϕ,{a},{c,d},{a,c,d}}Let A={a,d}, pcl(A)= {a,c,d} 

then pcl(A) A={c} which is pgprω-open set in X, but A is not pgprω-closed. 
 
Theorem 4.10.  A set A is pgprω-open set in (X, τ)  if and only if  U=X whenever  U is  
rgα -open and p-int(A) ∪ (X  A) ⊆ U. 
 Proof: Suppose that A is pgprω-open set in X. Let U be rgα-open  and  
p-int(A) ∪ (X-A) ⊆ U ,Uc ⊆ (p-int(A)∪Ac)c = (p-int(A))c 

∩ A  i.e  Uc ⊆  (p-int(A))c  Ac     
(because A B = A∩Bc).Thus Uc ⊆  pcl(Ac)–Ac  (because (p-int(A))c = pcl(Ac)).Now Ac 
is also pgprω-closed and  Uc is rgα-closed then from result 3.2 (vi) [10]  it follows Uc=ϕ 
then U=X. Conversely:  Suppose F is pgprω-closed and  F⊆A.  
Then p-int(A) ∪ (X-A) ⊆  p-int(A) ∪ (X-F). It follows that p-int(A) ∪ (X –F)=X. 
 Theorem 4.11. If  A and B be subsets of space (X, τ). If  B is pgprω-open and  
p-int(B) ⊆ A  then A∩B is pgprω-open. 
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Proof:  Let B is pgprω-open in X.  P-int(B) ⊆ A  and p-int(B) ⊆ B is always  then  
p-int(B) ⊆ A∩B and also  p-int(B) ⊆ A∩B ⊆ B  and B is pgprω-open set by Theorem 4.7 
,  A∩B is also  pgprω-open set in X. 
 
5. pgprw-neıghbourhood   
Defintion 5.1. (i) Let (X, )τ  be a topological space and Let x X∈ , A subset of  N of X is 

said to be pgprω-neighbourhood  of x if there exists an pgprw-open set G  s.t. x G N∈ ⊆ .    
 
(ii) The collection of all pgprω-neighbourhood of x X∈ is called pgprω-neighbourhood 
system at x and shall be denoted by pgprw-N(x).  
 
Theorem 5.2.  Every neighbourhood N of x X∈ is a pgprω-neighbourhood of X. 
Proof: Let N be neighbourhood of point x X∈ . To prove that N is a pgprω 
neighbourhood of  x  by definition of  neighbourhood ∃ an open set G s.t. 
x G N∈ ⊂ .Hence N is pgprω-neighbourhood of  x. 
 
Remark 5.3. In general, a pgprω-nbhd N of x ∈ X need not be a nbhd of x in X, as seen 
from the following example. 
 
Example 5.4.  Let X = {a, b, c, d} with topology τ = {X, φ,{a},{b ,{a, b},{a,b,c}}.  Then  
pgprωo(X) = {X, φ,{a}, {b},{c},{a, b},{b,c},{a, c} ,{a, b, c},{a,b,d }}. The set {c,d} is 
pgprω-nbhd of the point c, since the pgprω-open set {c} is such that c ∈ {c}⊂{c,d}. 
However, the set {c,d} is not a nbhd of the point c, since no pgprw open set G exists such 
that c ∈ G ⊂{c,d}. 
 
Theorem 5.5. If a subset N of a space X is pgprω-open, then N is a pgprω-nbhd of each 
of its points. 
Proof: Suppose N is pgprω-open. Let x ∈ N. We claim that N is pgprω-nbhd of  x. For N 
is a pgprω-open set such that x ∈ N ⊆ N. Since x is an arbitrary point of N, it follows that 
N is a pgprω-nbhd of each of its points. 
 
Remark 5.6. The converse of the above theorem is not true in general as seen from the 
following example. 
 
Example 5.7. Let X = {a, b, c, d} with topology τ = {X, ϕ {a},{c,d},{a, c,d}}. Then 
pgprωo(X) = {X, ϕ, {a},{b},{c},{d},{a,b},{a,c},{a,d},{c,d},{a,b,c},{ a,b,d},{a,c,d}}. 
The set {b,c} is a pgprω-nbhd of the point b, since the pgprω-open set {b} is such that 
b∈ {b} ⊆ {b,c}. Also the set {b,c} is a pgprω-nbhd of the point {c}, Since the pgprω-
open set {c} is such that c ∈ {c} ⊆ {b,c}. That is {b,c} is a pgprω-nbhd  of each of its 
points. However the set {b,c} is not a pgprω-open set in X. 
 
Theorem 5.8. Let X be a topological space. If F is a pgprω-closed subset of X, and x ∈ 
Fc. Prove that there exists a pgprω-nbhd N of x such that N∩F =ϕ. 
Proof: Let F be pgprω-closed subset of X and x ∈ Fc. Then Fc is pgprω-open set of X. So 
by theorem 5.5 Fc contains a pgprω-nbhd of each of its points. Hence there exists a 
pgprω-nbhd N of  x such that N⊂Fc. That is N ∩ F = ϕ. 
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Theorem 5.9. Let X be a topological space and for each x ∈ X, Let pgprω-N (x) be the 
collection of all pgprω-nbhds of x. Then we have the following results. 
(i) ∀ ∈x  X, pgprω-N (x) ≠ ϕ 
(ii)  N ∈ pgprω-N (x) ⇒ ∈ x  N 
(iii)  N∈pgprω-N (x), M ⊃ ⇒ ∈N  M  pgprω-N (x) 
(iv) N∈ pgprω-N (x), M∈ pgprω-N (x)  ⇒ ∈  N ∩M  pgprω-N (x) 
(v) N ∈ pgprω-N (x) ⇒ ∈ there exists M  pgprω-N (x) such that M ⊂ N and M ∈ pgprω-

N (y) for every y ∈ M 
Proof: (i) Since X is a pgprω-open set, it is a pgprω-nbhd of every x ∈ X. Hence there 
exists at least one pgprω-nbhd (namely - X) for each x ∈ X. Hence pgprω-N (x) ≠ ϕ for 
every x ∈ X. 
 
(ii) If N∈pgprω-N (x),then N is a pgprω-nbhd of x.So by definition of pgprω-nbhd,x ∈ 
N. 
 
(iii)  Let N ∈ pgprω-N (x) and M ⊃ N. Then there is a pgprω-open set G such that x ∈ G 
⊂ ⊂ ∈ ⊂ N. Since N  M, x  G  M and so M is pgprω-nbhd of x. Hence M ∈ pgprω-N (x).  
 
(iv) Let N ∈ pgprω-N (x) and M ∈ pgprω-N (x). Then by definition of pgprω-nbhd there 
exists pgprω-open sets G1 and G2 such that x ∈ G1 ⊂ ∈ N and x  G2 ⊂ M. 
Hence x ∈ G1 ∩ G2 ⊂ N ∩M -- (1). Since G1 ∩ G2 is a pgprω-open set, (being the 
intersection of two pgprω-open sets), it follows from (1) that N ∩ M is a pgprω-nbhd of 
x.  Hence N ∈∩M  pgprω-N (x). 
 
(v) If N ∈ pgprω-N (x), then there exists a pgprω-open set M such that x ∈ ⊂ M N. Since 
M is a pgprω-open set, it is pgprω-nbhd of each of its points. Therefore M ∈ pgprω-N (y) 
for every y ∈ M. 
 
Theorem  5.10. Let X be a nonempty set, and for each x ∈ X, let pgprω-N (x) be a 
nonempty collection of subsets of X satisfying following conditions. 
(i) N ∈ pgprω-N (x) ⇒ ∈ x  N 
(ii) N ∈ pgprω-N (x),M ∈ pgprω-N (x) ⇒ ∈ N ∩M  pgprω-N (x). 
Let τ consists of the empty set and all those non-empty subsets of G of X  having the 
property that x ∈ ∈ G implies that there exists an N pgprω-N (x) such that x ∈ ⊂ N  G, 
Then τ is a topology for X. 
 
Proof: ∈ ∈(i) φ  τ by definition. We now show that x  τ . Let x be any arbitrary element 
of X. Since pgprω-N (x) is nonempty, there is an N ∈ pgprω-N (x) and so x ∈ N by (i). 
Since N is a subset of X, we have x ∈ ⊂ ∈ N  X. Hence X  τ . 
(ii) Let G1 ∈ τ and G2 ∈ ∈τ. If x  G1 ∩ G2 then x ∈ G1 and x ∈ G2. Since G1 ∈ τ and G2 
∈ ∈τ , there exists N  pgprω-N (x) and M ∈ pgprω-N (x), such that x ∈ ⊂ N  G1 and x ∈ 
M ⊂ G2. Then x ∈ ⊂ N ∩ M  G1 ∩ G2. But  N ∈∩M  pgprω-N (x) by (2). Hence G1 ∩ G2 

∈ τ .Let Gλ ∈ ∈∧ ∈∪τ for every λ  . If x  {Gλ ∈∧ ∈: λ  }, then x  Gλx ∈∧for some λx  . 
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Since Gλx ∈ ∈τ , there exists an N pgprω-N (x) such that x ∈ ⊂ N  Gλx and consequently    
x ∈ ⊂∪ N  {Gλ ∈∧ ∪: λ  }. Hence {Gλ ∈∧ ∈: λ  }  τ. It follows that τ is topology for X. 
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