min

	35133/42133/A330								
Reg. No.									

I Semester B.Sc. 3/4 Degree Examination, March - 2022 MATHEMATICS (Optional)

Paper: I: Differential Calculus

(Repeater w.e.f. 2014-15)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Question Paper contains Three Parts A, B, C.
- 2. Answer ALL Questions.

PART-A

Answer any TEN of the following:

 $(10 \times 2 = 20)$

- 1. a) State multiplicative law & trichotomy law.
 - b) Prove that $|xy| = |x||y| \forall x, y \in R$.
 - c) Prove that $f(x) = \begin{cases} 3x+1 & x \le 0 \\ x+1 & x > 0 \end{cases}$ is continuous at x = 0
 - d) State Intermediate value theorem.
 - e) Find the nth derivative of $\log (ax + b)$
 - f) Find the n^{th} derivative of $\sin^2 x$
 - g) Find the nth derivative of $\sin x \cdot \sin 2x$
 - h) State cauchys mean value theorem.
 - i) Verify Lagranges mean value theorem for the function $f(x) = e^x$ in [0,1].
 - j) Expand sin x by Maclauring theorem.
 - k) Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$
 - 1) Evaluate $\lim_{x\to 0} \frac{\log \sin x}{\cot x}$.

PART-B

Answer any FOUR of the following.

 $(4 \times 5 = 20)$

- 2. State and prove Archimedian property for real numbers.
- 3. Show that $f(x) = \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x+1}}}$ for $x \neq 0$ and f(0) = 0 is discontinuoun at x = 0.
- 4. Find the nth derivative of $e^{ax} \cos(bx + e)$
- 5. State and prove Lagranges Mean value theorem.
- 6. Verify Cauchy's mean value theorem for the function $f(x) = \sin x & g(x) = \cos x$ in [a, b]
- 7. Evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} \frac{1}{\sin^2 x} \right]$.

PART-C

Answer any FOUR of the following.

 $(4 \times 10 = 40)$

- 8. a) Prove that $|x+y| \le |x| + |y|$, for all, $x, y \in R$.
 - b) If $x, y, z \in R$ then $x^2 + y^2 + z^2 \ge xy + yz + zx$
- 9. a) If $\lim_{x\to a} f(x) = \bot$, $\lim_{x\to a} g(x) = m$ then prove that $\lim_{x\to a} [f(x) + g(x)] = l + m$.
 - b) A function which is continuous on a closed interval attains its bounds at least once in that interval.
- 10. a) State and Prove Leibnitz's Theorem for nth derivative of product of two functions.
 - b) If $y = (\sin^{-1} x)^2$ Prove that $(1 x^2) y_{n+2} (2n+1) \times y_{n+1} n^2 y_n = 0$.
- 11. a) State and Prove Taylor's Theorem with Schlomilch Rouches form of Remainder.
 - b) Expand $\log[\sec x + \tan x]$ by using Maclaurin's Series.
- 12. a) Evaluate $\lim_{x\to 1} \left[\frac{x}{x-1} \frac{1}{\log x} \right]$
 - b) Evaluate $\lim_{x\to 0} \left[\frac{e^x 2\cos x + e^x}{x\sin x} \right]$

		44033/A0330						
Reg. No.								

I Semester B.Sc. 5 Degree Examination, March - 2022

MATHEMATICS (OPTIONAL)

ALGEBRA AND CALCULUS - I

Paper: MATDSCT 1.1(W.e.f.2020-2021)

(Repeaters)

Time: 3 Hours

Maximum Marks: 80

4022/40220

Instructions to Candidates:

- 1. Question paper contains 3 parts namely A, B and C.
- 2. Answer all questions.

PART-A

L Answer any Ten of the following:

 $(10 \times 2 = 20)$

- 1. a) Find the reciprocal determinant of $\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$.
 - b) Define elementary row transformation of a matrix.
 - c) Define symmetric and skew symmetric matrices.
 - d) If a > 0, b > 0 then prove that $a^2 + b^2 \ge 2ab$.
 - e) Find the value of K if $f(x) = \begin{cases} 4x-1 & \text{for } x \le 1 \\ x+k & \text{for } x > 1 \end{cases}$ is continuous at x=1.
 - f) State Borel covering theorem.
 - g) Evaluate $\lim_{x\to 0} \frac{a^x-1}{b^x-1}$.
 - h) If $y = \log(ax + b)$ then find y_n .
 - i) Find the n^{th} derivative of $\sin 3x . \cos 2x$.
 - j) State cauchy's mean value theorem.
 - k) Expand cosx by maclaurins theorem.
 - 1) find the value of "c" for f(x) = x(x-1) in [0, 2] by using lagranges mean value theorem.

PART-B

II. Answer any Four of the following.

 $(4 \times 5 = 20)$

2) Prove that
$$\begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} = (x+3a)(x-a)^3$$
.

- 3) If x, y, $z \in R$ then show that $x^2 + y^2 + z^2 \ge xy + yz + zx$.
- 4) State and prove Intermediate value theorem.
- 5) If $\lim_{x\to a} f(x) = l$ and $\lim_{x\to a} g(x) = m$ Then prove that $\lim_{x\to a} [f(x).g(x)] = l.m$
- 6) Find the n^{th} derivative of $e^{ax} \cdot \cos(bx + c)$.
- 7) Verify cauchy's mean value theorem for the functions $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].

PART-C

III. Answer any Four of the following.

 $(4 \times 10 = 40)$

- 8) a) Prove that the rank of matrix in equal to rank of its a transposed matrix.
 - b) Find the rank of matrix $A = \begin{vmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{vmatrix}$ by reducing it to normal form.
- 9) a) Prove that $|x+y| \le |x| + |y| \forall x, y \in R$.
 - b) Examine the continuity of $f(x) = \begin{cases} x.\sin(\frac{1}{x}), & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \text{ at } x = 0. \end{cases}$
- 10 a) If f(x) is continuous in [a, b] then it is bounded in that interval.

- b) Evaluate $\lim_{x\to x} \frac{\log \sin x}{\log \sin 2x}$.
- 11) a) State and prove leibritz's theorem for the n^{th} derivative of the product of two functions.
 - b) If $y = (\sin^{-1} x)^2$ then prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$
- 12) a) State and prove taylor's theorem with schlomilch and Rouches form of remainder.
 - b) Expand $\tan^{-1} x$ by using Maclaurin series up to the terms containing x^5 .

	35	512	4/ 4	<u>21</u>	24/	A_{2}	240
Reg. No.							

I Semester B.Sc. 3/4 Degree Examination, March - 2022 CHEMISTRY (Optional)

(Old Syllabus)

(Repeater)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. ALL Questions are Compulsory.
- 2. Answer ALL questions in the Same Answer Book.
- 3. Draw Neat Labelled Diagrams and Equations wherever necessary.

SECTION - A

I. Answer any TEN of the following.

 $(10 \times 2 = 20)$

- 1. a) State two limitations of Bohr's Theory.
 - b) What is Covalent Bond?
 - c) Write the significant figures of the following numbers.
 - i) 7.80×10^{10}
 - ii) 457.76
 - d) Define Indicator. Which Indicator is used for the titration of Na₂CO₃ against HCl.
 - e) Define the Term Recrystalization.
 - f) Write the Four types of electronic transitions of UV Spectroscopy.
 - g) What are Azeotropic mixtures? Give an example.
 - h) Give Law of Corresponding States.
 - i) State Nernst Distribution Law.
 - j) Write the electronic configuration of Copper (At.No. 29).
 - k) What are Andrew's Brotherton?
 - 1) Draw chari and boat forms of Cyclohexane.

SECTION - B

II. Answer any FOUR of the following.

 $(4 \times 5 = 20)$

- 2. Explain the formation of H, molecule on the basis of VBT.
- 3. Write the significance of four quantum numbers.
- 4. What is Complexometric titration? Explain in brief the estimation of Zinc using EDTA.
- 5. Define the term conformation and explain conformation analysis of ethane molecule.
- 6. Explain the terms
 - a) Bathochromic Shift.
 - b) Hypochromic Shift.
- 7. Describe the Nicotin-Water System with neat diagram.

SECTION - C

III. Answer any FOUR of the following.

 $(4 \times 10 = 40)$

- 8. a) Explain Bohr-Sommerfeld model of an Atom.
 - b) Write a note on errors in Quantitative analysis.
- 9. a) Explain Stability of Cycloalkanes using Baeyer's Strain Theory.
 - b) Explain the chemical method for the determination of the configuration of maleic acid and Fumaric Acid.
- 10. a) Explain the Optical Isomerison of Lactic Acid.
 - b) Explain Steam Distillation in the Purification of Organic Compounds.
- 11. a) State the Law of Corresponding States and derive reduced equation of State using Vander Waal's equation.
 - b) Explain the following terms:
 - i) Critical Temperature
 - ii) Critical Volume
 - iii) Critical Pressure
- 12. a) Calculate the pH of ammonium acetate solution given that $K_a = 1.175 \times 10^{-3}$ and $K_b = 1.8 \times 10^{-5}$.
 - b) Give Principle of U V Spectroscopy and mention the few applications of UV Spectroscopy.

		44	:02	4/ /	\ U∠	<u> </u>
Reg. No.						

I Semester B.Sc.5 (CBCS) Degree Examination, March - 2022 CHEMISTRY(OPTIONAL) (Repeaters)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) All questions are compulsory.
- 2) Draw neat diagrams and give equations wherever necessary.
- I. Answer any Ten Questions.

 $(10 \times 2 = 20)$

- 1) State Heisenberg's uncertainty principle.
- 2) Name the series of lines appear in the hydrogen spectrum
- 3) Write the electronic Configuration of cr(Z=24).
- 4) Calculate the bond order in O_2 molecule.
- 5) What are the factors influencing the formation of covalent bond?
- 6) What is hybridisation?
- 7) What is electromeric effect?
- 8) State Huckel's rule.
- 9) What are electrophiles? Give two examples.
- 10) Give the methods of purification of liquids.
- 11) Calculate the angle strain in cyclopropane
- 12) What are distereoisomers? Give an example.
- II. Answer any Three of the following.

 $(3 \times 5 = 15)$

- a) Explain Bohr's theory of atomic model.
- b) What are quantum numbers? Give the significance of quantum numbers.

- c) Explain pauli's exclusion principle and hund's rule for filling electrons in orbitals.
- d) Explain the shapes of S.P and d atomic orbitals.

III. Answer any Three Questions.

 $(3 \times 5 = 15)$

- a) Mention the salient features of MOT.
- b) Explain the 'Born-Haber' cycle for the formation of sodium chloride.
- c) Explain the geometry of pc'5 on the basis of hybridisation.
- d) Give the comparison of VBT and MOT.

IV. Answer any Three Questions.

 $(3 \times 5 = 15)$

- a) What are dienes? Give the Classification of dienes with examples.
- b) What are carbanions? Explain their stability.
- c) Explain the preparation of alkenes by.
 - i) dehydration of alcohols.
 - ii) dehydrohalogination of alkyl halides.
- d) What is ozonolysis? Explain the ozonolysis of 2-butene.

V. Answer any Three Questions

 $(3 \times 5 = 15)$

- a) What is chromatography? Explain the column chromatography.
- b) Explain the rules for assigning the R and S notations.
- c) What are cycloalkanes? Explain sachse mohr theory of strainless rings.
- d) Explain the following with examples.
 - i) Enentiomers
 - ii) Epimers

	44035/A0350					
Reg. No.						

I Semester B.Sc. 5 (CBCS) Degree Examination, March - 2022 PHYSICS (Repeater)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Calculators can be used for solving problems.
- 2. Write intermediate steps during problem solving.

PART-A

Answer any Ten questions of the following.

 $(10 \times 2 = 20)$

- 1. i) What is centre of mass?
 - ii) What is elastic collision?
 - iii) A torque of 20Nm is applied on a wheel, initially at rest. Calculate the angular momentum of the wheel after 3 seconds.
 - iv) State Newton's law of gravitation.
 - v) Define radius of gyration.
 - vi) State and explain Hook's law.
 - vii) What is Cantilever?
 - viii) The Poisson's ratio and rigidity modulus of material of wire are 0.285 and $3.5 \times 10^{10} N/m^2$ respectively. calculate the Young's Modulus of the material of wire.
 - ix) Define Inertial frame of reference.
 - x) Give fundamental postulates of special theory of relativity.
 - xi) Calculate the energy of rest mass of electron in ev. Given rest mass of Proton = $1.67 \times 10^{-27} kg$.
 - xii) Write expression for escape velocity.

PART - B

Answer Question No.2 or Question No.3

2. a) Derive an expression for velocity of rocket.

(10)

b) A steel ball of 1kgs moving with velocity of 12m/s strikers 5kg block, which is initially at rest. The collision is elastic. find the speed of the ball and the speed of the block after collision. (5)

(OR)

- 3. a) Derive an expression for final velocities in case of elestic Collision in one dimension. (10)
 - b) A mass of 10,000 kg moving with speed of 15m/s strikes stationary mass of same value. After collision masses get coupled & move together what is their common speed? (5)

PART-C

Answer Question No.4 or Question No.5

- 4. a) State and prove Kepler's 3rd law of planetary motion.
 - b) Escape velocity of the earth is 11.2km/s find the escape velocity of planet whose radius is twice & mass is thrice to that of the earth.

(OR)

- 5. a) Derive an expression for Moment of Inertia of rectangular lamina.
 - (i) About an axis through its centre and parallel to its plane and.
 - (ii) About an axis perpendicular to its plane.
 - b) A circular ring has moment of inertia $30 \times 10^{-3} kgm^2$ about centre of gravity and perpendicular to its plane. Find the M.I. of the ring about the diameter.

PART-D

Answer Question No.6 or Question No.7

- a) Derive the relation connecting between Young's modulus, Bulk modulus, and modulus of rigidity.
 - b) Calculate young's modulus of material. Given $K = 1.5 \times 10^{11} N / m^2$; $\eta = 4.34 \times 10^{-10} Nm^{-2}$

(OR)

- 7) a) Obtain an expression for Young's Modulus of a beam supported at its ends and loaded at the middle.
 - b) A metal rod of length 1m and breath 0.03m and thickness 2.5mm is clamped at one end and loaded at free end with 3kg. Calculate the depression produced. Given $Y = 4 \times 10^{11} N / m^{-2}$

PART-E

Answer Question No.8 or Question No.9.

- 8) a) Describe with neat diagram Michelson Morley experiment and give the concept of nagetive result (10)
 - b) How fast would a rocket have to go relative to an observer for its length to be contracted to 75% of its length at rest. (5)

(OR)

- 9) a) Derive Einstein's mass energy relation (10)
 - b) Find the velocity at which the mass of the particle is double than its rest mass. (5)

	•	42	213	5/ 3	<u> 51</u>	<u>35/</u>	A 3	350	
Reg. No.									

I Semester B.Sc.4 (Non-CBCS) Degree Examination, March - 2022 PHYSICS

(Repeaters)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Calculators can be used to solve problems.
- 2. Write intermediate steps during problem solving.

PART-A

Answer any Ten questions of the following.

- 1. a) Define simple Harmonic motion.
 - b) What is elastic collision.
 - c) State Kepler's second law of planetary motion.
 - d) Define angular momentum.
 - e) State the theorem of parallel axis.
 - f) What is compound pendulum?
 - g) Define Poisson's ratio.
 - h) Write the relation connecting Y, K, and η elastic constants.
 - i) What is the effect of impurities on surface tension of a liquid.
 - j) Define coefficient of viscosity of a liquid.
 - k) Calculate the orbital velocity of a satellite moving close to the earth. Given radius of the earth is 6400 km and value of of is $9.8 \, ms^{-2}$.
 - 1) Calculate the bending moment of a bar of Young's modulus $20 \times 10^{10} N/m^2$, geometric moment of inertia $4 \times 10^{-3} kgm^2$ and bending radius 2m.

PART - B

Answer any Four of the following.

- 2. Derive an expression for the total energy of a particle executing S.H.M.
- 3. State and explain theorem of perpendicular axis.
- 4. Derive an expression for the excess of pressure inside the soap bubble.
- 5. The escape velocity of the earth is $11.2 \, kms^{-1}$ find the escape velocity on a planet whose radius is thrice that of the earth and whose mass is twice that of the earth.
- 6. A metal disc of mass 1kg and radius 10cm is suspended horizontally by a vertical wire of length 50cm and radius 0.5mm. If the system executes 25 torsional oscillations in two minutes calculate the rigidity modulus of the material of the wire.
- 7. Calculate the surface tension of water if it rises to a height of $0.5 \times 10^{-2} m$ in a capillary tube of radius 3mm. Density of water is $1000 \text{kg/} m^3$ and angle of contact for water is zero.

PART - C

- 8. State the principle of rocket. Derive an expression for the final velocity of the single stage rocket.
- 9. Derive an expression for the time period of light spiral spring.
- 10. Describe an experiment to determine the moment of inertia of flywheel.
- 11. Define neutral surface. Derive an expression for the bending moment.
- 12. Derive Poiseuille's formula for the flow of viscous fluid through a narrow tube.