B.L.D.E.Association's

S.B.Arts and K.C.P. Science College Vijayapur

PG DEPARTMENT OF CHEMISTRY

Programme Outcomes (POs),

Programme Specific Outcomes(PSOs)

and Course Outcomes (COs)

B.L.D.E. Association's S.B. Arts and K.C.P Science College Bijapur Post Graduate Department of Chemistry POS 2019-2020 Subject: Analytical Chemistry

P01: In advance elementary/fundamental knowledge.

PO2: Critical thinking, scientific methods to design, carry out analytical the results of experiments and get awareness of the impact of chemistry on environment, society, etc.

PO3: Higher education, competitive, Reputed Research laboratory.

PO4: Industrial application.

PSO1: To develop strong and compete knowledge in theoretical and practical chemistry.

PSO2: Able to explain Theory, Principle, Postulates, Methods, explaining instrumentation, Derivation, calculations and to calculate the physical and electrochemical parameters

PSO3: To recognize the various laws and theories and solving numerical problems.

PSO4: To develop various technical and analytical skills through laboratory training.

POS5: To create awareness the importance. And impact of chemistry on environment.

M.Sc 1st Sem: Analytical Chemistry

CO1: Review of different types of electromagnetic radiations.

CO2: Study the types of transitions and their energy levels.

CO3: Understand the selection rules.

CO4: Study the classification of polyatomic molecules (CO₂, CH₃F and BCl₃) based on moment of inertia-linear, symmetric top and asymmetric top.

C05: To know the detail study of UV-Visible Spectroscopy.

CO6: To study the λ max for polyenes, α , β -unsaturated aldehydes and ketones (Woodward-Fisher rules), aromatic systems and their derivatives.

CO7: To know about the number of degrees of freedom of vibration, modes of vibratioa and, Vibrational coupling overtones and Fermi resonance.

CO8: To study the brief discussion of identification of functional groups alkanes, alkenes, aromatics, carboxylic acids, carbonyl compounds(aldehydes and ketones, esters), amides and amines.

CO9: To study the principle, instrumentation and applications of Raman Spectra

COURSE : M.Sc Ist Semester (Theory)

Course Code : CHES-1.5

Subject: Analytical	Chemistry
---------------------	-----------

Course	P01	P02	P03	P04	PS01	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	2	2	3	3	1	3	3	2	3
CO2	1	1	3	2	3	3	3	2	3
CO3	-	2	1	3	3	3	3	2	3
CO4	-	3	2	2	3	3	3	2	3
C05	3	2	1	3	3	3	3	2	3
C06	2	3	2	1	3	3	3	2	3
C07	2	1	1	3	3	3	3	2	3
C08	-	3	2	1	3	3	3	2	3
CO9	-	3	1	1	3	3	3	2	3

P. G. Department of Chemistry, SB Arts & KCP Science Lettege BLAPUR - 586101

ordinator IQAe, S.B.Arts & K.C.P.Science College, Vijayapur.

S.B.Arts & K.C.P. Science College BIJAPUR.

EVALUATION MAPPING

THEORY:

Marks Distribution :

1. Internal Assessment = 20 marks

2. University Examination = 80 marks

SI No	Parameter	Percentage (%)
1	Knowledge	20
2	Understanding	25
3	Numericals	10
4	Descriptive	45

Inator, P. G. Department of Chemistry, SB Arts & KCP Science Lullege BIJAFUR - 586101

IQAC, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur.

hcipal, S.B.Arts & K.C.P. Science College BIJAPUR.

B.L.D.E.Association's

S.B.Arts and K.C.P. Science College Vijayapur

PG DEPARTMENT OF CHEMISTRY

Programme Outcomes (Pos),

Programme Specific Outcomes(PSOs)

and Course Outcomes (Cos)

B.L.D.E. Association's S.B. Arts and K.C.P Science College Bijapur Post Graduate Department of Chemistry POS 20119-2020 Subject: Organic Chemistry

PO1: In advance elementary/ fundamental knowledge.

PO2 : Critical thinking, scientific methods to design, carry out analytical the results of experiments and get awareness of the impact of chemistry on environment, society, etc. .

PO3:Higher education, competitive, Reputed Research laboratory.

PO4: Industrial application.

PSO1-to develop strong and compete knowledge in theoretical and practical chemistry.

PSO2-Able to explain Theory, Principle, Postulates, Methods, explaining instrumentation, Derivation, calculations and to calculate the physical and electrochemical parameters

PSO3: To recognize the various laws and theories and solving numerical problems.

PSO4: To develope various technical and analytical skills through laboratory training.

POS5: To create awareness the importance. And impact of chemistry on environment.

Sem 1st: Organic Chemistry

CO1: Concept of hybridization : sp3, sp2, sp – with examples.

CO2: Electronic effects : Inductive, electronic, resonance and hyperconjugation.

CO3: Classification of organic reagents and reactions.

CO4: Reactive Intermediates : carbocations, carbanions, free radicals, carbenes, nitrenes, and arynes- their formation, stability, structure and reactions.

CO5: Organic acid and bases : Effect of substituents with examples

CO6: Addition reactions: Addition to Carbon-Carbon double bond.

CO7: Elimination reactions: E1, E2, E1CB mechanisms.

CO8: substitution reactions:

CO9: STEREOCHEMISTRY

PCO1: Preparation p-bromo aniline from aniline.

PCO2: Preparation of p-nitro aniline from aniline.

PCO3: Preparation of benzoic acid from benzaldehyde.

PCO4: Preparation of phenyl azo beta naphthol.

PCO5: Preparation of 1-phenyl-3-methyl-pyrazolone.

COURSE : M.Sc I Semester (Theory&Practical)

Course Code :

Subject: Organic Chemistry

Course	P01	P02	P03	P04	PS01	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	2	3	2	2	2	3	3	-	-
CO2	1	2	3	1	3	3	3	1	-
CO3	-	2	1	3	3	3	3	1	-
CO4	2	3	1	-	3	2	3	1	-
CO5	3	3	-	-	3	3	3	-	-
CO6	1	3	2	1	3	3	3	-	-
C07	2	3	1	3	3	3	3	-	-
C08	-	3	1	1	3	3	3		-
CO9	-	3	1	1	3	3	3		-
CO10	-	3	1	1	3	3	3		-
PCO1	2	3	-	3	-	-	-	3	3
PCO2	2	2	-	3	-	-	-	3	3
PCO3	2	2	-	3	-	-	-	3	3
PCO4	2	2	-	3	-	-	-	3	3
PCO5	2	2	-	3	-	-	-	3	3

M Sc 2nd Sem

- CO1: C-C bond forming reactions.
- CO2: C-N bond forming reactions.
- CO3: C-O bond forming reactions.
- CO4: C-Cl bond forming reaction: Hell-Volhard-Zelinski reaction.
- CO5: Oxidation reactions.
- CO6: Reduction reactions.
- CO7: Rearrangement reactions involving migration to electron deficient carbon
- CO8: Rearrangement reactions involving migration to electron deficient nitrogen
- CO9: 3-Membered heterocyclic compounds
- CO10: 4-Membered heterocyclic compounds with one and two hetero atoms.
- CO11: 6-Membered heterocyclic compounds with one and two hetero atoms
- PCO1: ANALYSIS OF BINARY ORGANIC MIXTURE
- PCO2: Chromatographic techniques.

COURSE : M.Sc II Semester (Theory&Practical)

Course (Code :
----------	--------

Subject: Organic Chemistry

uise coue. Subject. Organic chemistry							usu y		
Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
C01	3	3	3	-	3	3	3	-	-
CO2	3	3	2	2	3	3	2	-	-
CO3	3	2	3	3	3	3	3	-	-
CO4	-	2	-	-	3	3	3	-	-
CO5	1	3	1	-	3	3	3	-	-
CO6	2	3	2	2	3	3	3	-	-
C07	-	1	1	3	3	3	3	-	-
CO8	1	3	2	3	3	3	3		-
CO9	2	3	2	2	3	3	3		-
CO10	1	3	3	3	3	3	3		-
C011	2	2	-	2	2	2	3	3	3
PCO1	2	2	-	3	-	-	-	3	3
PCO2	2	2	-	3	-	-	-	3	3

<u>M Sc3rd sem</u>

CO1: REAGENTS IN ORGANIC SYNTHESIS

CO2: PHOTOCHEMISTRY

- CO3: Norrish type I and Norrish type II reactions
- CO4: Pericyclic Reactions: Classification of pericyclic reactions.
- CO5: Electrocyclic reactions.
- CO6: Sulphonamides: Introduction, classification, synthesis and SAR studies
- CO7: Antimalarials: Introduction, classification, synthesis and drug action
- CO8: Analgesics: Introduction, classification, synthesis and drug action
- CO9: Anti-inflammatory: Introduction, classification, synthesis and drug action
- CO10: pharmacokinetics, pharmacodynamics
- PCO1: Estimation of aniline and glucose.
- PCO2: Determination of saponification value of oils.
- PCO3: Determination of iodine value of oils.

COURSE : M.Sc III Semester (Theory&Practical)

Course	P01	P02	PO3	P04	PS01	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	2	3	2	-	3	2	3	-	-
CO2	3	2	2	3	3	3	3	-	-
CO3	2	2	2	3	3	3	3	-	-
CO4	-	2	2	3	3	3	3	-	-
CO5	3	2	2	1	3	3	3	-	-
CO6	3	1	2	3	3	3	3	-	-
C07	1	2	2	3	3	3	3	-	-
CO8	-	1	2	3	3	3	3		-
CO9	1	3	3	3	3	3	3		-
CO10	1	3	2	3	3	3	3		-
PCO1	3	3	-	2	2	2	3	3	3
PCO2	2	3	-	3	-	-	-	3	3
PCO3	3	2	-	3	-	-	-	3	3

Course Code :

Subject: Organic Chemistry

<u>M Sc IVth sem</u>

- CO1: Designing the synthesis based on retrosynthetic analysis.
- CO2: Disconnection Approach: An introduction to synthons and synthetic equivalents
- CO3: One Group C-C Disconnections.
- CO4: Two Group C-C Disconnections.
- CO5: BIOORGANIC POLYMERS.
- CO6: ALKALOIDS AND TERPENOIDS.
- CO7: STEROIDS, ANTIBIOTICS AND PROSTAGLANDINS.
- CO8:Understaing Optical properties in solids.
- PCO1: Isolation of nicotine from tobacco.
- PCO2: Isolation of caffeine from tea.
- PCO3: Isolation of piperine from pepper.

COURSE : M.Sc IV Semester (Theory&Practical)

Course Code :

Subject: Organic Chemistry

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
C01	-	-	3	3	3	3	3	-	-
CO2	-	2	3	3	3	3	3	-	-
CO3	2	3	2	3	3	3	3	-	-
CO4	1	2	2	3	3	3	3	-	-
CO5	1	2	2	1	3	3	3	-	-
C06	2	1	2	2	3	3	3	-	-
C07	-	2	3	3	3	3	3	-	-
C08	-	1	2	3	3	3	3		-
PCO1	3	3	-	2	2	-	-	2	3
PCO2	3	3	-	3	-	-	-	3	3
PCO3	3	3	-	3	-	-	-	3	3

nator,

P. G. Department of Chemistry, SB Arts & KCP Science Leilege BLAPUR - 586101

IQAC, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur.

ncipal, S.B.Arts & K.C.P. Science College BIJAPUR.

EVALUATION MAPPING

THEORY:

Marks Distribution :

1. Internal Assessment = 20 marks

2. University Examination = 80 marks

Sl No	Parameter	Percentage (%)
1	Knowledge	20
2	Understanding	25
3	Numericals	10
4	Descriptive	45

Coordinator, P. G. Department of Chemistry, SB Arts & KCP Science Lullege BIJAFUR - 586101

Co-ordinator IQAe, S.B.Arts & K.C.P.Science College, Vijayapur.

cipal, S.B.Arts & K.C.P. Science College BIJAPUR.

Practical Examination

Marks Distribution :	1. Internal Assessment	=	10 marks
	2. University Examination	=	40 marks

Class : M.S	c I Semester Organic Practical	-I
Sl No	Parameter	Percentage
1	Accuracy	25
2	Technique / Systematic Percentage	05
3	Record Book	05
4	Viva - Voce	05

Class : M.Sc II Semester

Percentage Sl No Parameter Preliminary 1 05 2 Analysis of binary mixture 15 3 Derivative preparation 10 **Record Book** 05 4 4 Viva-Voce 05

Class : M.Sc III Semester

Organic Practical-III

Organic Practical-II

Sl No	Parameter	Percentage
1	Accuracy	25
2	Technique / Systematic Percentage	05
3	Record Book	05
4	Viva - Voce	05

Class : M.Sc IV Semester

Organic Practical-IV

Sl No	Parameter	Percentage
1	Accuracy	25
2	Technique / Systematic Percentage	05
3	Record Book	05
4	Viva - Voce	05

e-ordinator, P. G. Department of Chamistry, SB Arts & KCP Science Ludege S.B.Arts & K.C.P.Science College, Vijayapur. BIJAFUR - 586101

rincipal, S.B.Arts & K.C.P. Science College BIJAPUR.

B.L.D.E.Association's

S.B.Arts and K.C.P. Science College Vijayapur

PG DEPARTMENT OF CHEMISTRY

Programme Outcomes (POS),

Programme Specific Outcomes(PSOs)

and Course Outcomes (Cos)

B.L.D.E. Association's S.B. Arts and K.C.P Science College Bijapur Post Graduate Department of Chemistry POS 20119-2020 Subject: Physical Chemistry

PO1: In advance elementary/ fundamental knowledge.

PO2 : Critical thinking, scientific methods to design, carry out analytical the results of experiments and get awareness of the impact of chemistry on environment, society, etc. .

PO3:Higher education, competitive, Reputed Research laboratory.

PO4: Industrial application.

PSO1-to develop strong and compete knowledge in theoretical and practical chemistry.

PSO2-Able to explain Theory, Principle, Postulates, Methods, explaining instrumentation, Derivation, calculations and to calculate the physical and electrochemical parameters

PSO3: To recognize the various laws and theories and solving numerical problems.

PSO4: To develope various technical and analytical skills through laboratory training.

POS5: To create awareness the importance. And impact of chemistry on environment.

Ist Semester

Subject : Physical Chemistry-1

- CO1: Fundamental laws of quantum chemistry and comparative between classical and quantum Theory.
- CO2: Laws and principle of photoelectric, Compton and de Broglie hypothesis .
- CO3: Basic postulates of quantum mechanics.
- CO4: To understand the Schrödinger's equation, Physical significance and characteristics of wave function.
- CO5: Review of basic principles of thermodynamics.
- CO6: Derivation of the Various Thermodynamic parameters.
- CO8: To study of basic principle and equation of conductance.
- CO9: To understand and derivation of Debye Huckel Onsager equation .
- CO10: To understand the basic principle of batteries.

PSO1: To determine the strength, equivalent conductance of some electrolytes.

CO11: To understand the Basic concepts polymers and their types

CO12: To understand the fundamentals of nanoscience and methods tofabrication of nanoparticles

PCO1: Analysis of binary mixture of two miscible liquids by viscometry and the relation between viscosity of solution and electrical conductivity

PCO2: Potentiometric titration of halides in a mixture of Cl-, Br- and I- with AgNO3 PCO3: Titration of phosphoric acid solution with NaOH using quinhydrone electrode by Potentiometrically

PCO4: Precipitation titration of BaCl2 vs Na2SO4 by conductometrically

PCO5: Precipitation titration of KCl vs AgNO3 by conductometrically

PCO6: Verification of Beers lamberts law by colarimetric method and calculation of molar extinction coefficient (molar absorption co-efficient)

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
CO1	3	2	3	1	2	2	-	-
CO2	1	2	2	3	3	02		
CO3	-	2	1	3	3	3	3	1
CO4	-	3	1	-	3	3	3	1
CO5	2	2	-	-	3	3	3	-
CO6	1	3	2	1	3	3	3	-
CO7	2	3	1	3	3	3	3	-
CO8	-	3	1	1	3	3	3	
CO9	-	3	1	1	3	3	3	
CO10	-	3	1	1	3	3	3	
CO11	2	2	-	3	-	-	-	3
	COURSE Marca 1 st Comparing (Departice)							

COURSE : Physical Chemistry (Theory & Practical) Subject: Physical Chemistry

COURSE : M.Sc Ist Semester (Practical)

Subject:Physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
PCO1	2	2	-	3	-	-	-	3
PCO2	2	2	-	3	-	-	-	3
PCO3	2	2	-	3	-	-	-	3
PCO5	2	2	-	3	-	-	-	3
PCO5	2	2	-	3	-	-	-	3
PCO5	2	2	-	2	-	-	-	3

II semester

Subject : Physical Chemistry-II

CO1: To understand the basic concept of statistical thermodynamics.

CO2: To know the applicative part of the Maxwell Boltzmann stastics, Bose-Einstein statistics, Fermi-direc statistics.

CO3: Derive the all partition function and there concept .

CO4: To know the simple harmonic oscillator in classical mechanics and quantum mechanics.

CO5: To study the applicative part of the quantum mechanics.

CO6: To study the chemical kinetics and methods of fast and slow reactions.

CO7: To know the energy relationship and equations.

CO8: Fundamental laws and basic concept of photochemistry and photodegradation.

CO9: A review of laws of photochemistry. Physical process and properties and reaction of Photo catalyst.

PCO1: Kinetics of acid catalyzed of hydrolysis of methyl acetyl and determination of energy activation.

PCO2: To determine the concentration of H2SO4, CH3COOH and CuSO4 in a given solution by conductometry

PCO3: To compare the strength of the weak acid by conductance method (CH3COOH and HCOOH)

PCO4: To determination of enthalpy of solution of KNO3 by solubility method

COURSE : M.Sc II Semester (Theory)

Subject: Physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
CO1	3	3	2	-	3	3	3	-
CO2	1	3	2	2	3	3	3	-
CO3	3	2	3	3	3	3	3	-
CO4	-	3	-	-	3	3	3	-
CO5	1	3	1	-	3	3	3	-
CO6	2	3	2	2	3	3	3	-
CO7	-	3	1	3	3	3	3	-
CO8	1	3	2	3	3	3	3	
CO9	2	3	2	2	3	3	3	

COURSE : M.Sc II Semester (Practical)

Subject : Physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
PCO1	2	2	-	3	-	-	-	3
PCO2	2	2	-	3	-	-	-	3
PCO3	2	2	-	3	-	-	-	3
PCO4	2	2	-	3	-	-	-	3

III SEM

Subject : Physical Chemistry-III

CO1: To understand the basic concept of Surface chemistry.

CO2: To study the Basic principles of catalysis and determine rate of reaction by complex mechansms.

CO3: To study the Fundamentals and importance of material chemistry,

CO4: To study the Methods of preparation nanoparticle by using various methods.

CO5: To derive the Ist and IInd opposing reactions of rate of chemical kinetics.

CO6: To study the reaction and mechanism to derive the mathematical treatment.

CO7: To study the applicative aspect of polymers and dendrimers .

CO8: To study the fabrication polymer, shape and object of polymers.

PCO1: Verify the degree of DeBye-Huckel and Onsagar equivalent conductance for

electrolytes (NaCl, HCl) and determine the constantPCO2: To determination of properties of liquids.

PCO2: To study the hydrolysis of methyl acetate catalysed by hydrochloric solution by equimolar solution of Urea-HCl solution and hence determine the degree of hydrolysis of salt

PCO3: To determine the molecular weight of high polymer PVA from viscosity measurements PCO4: To investigate the reaction between K2S2O8 and KI by colarimetric method

PCO5: Determination of heat of solution of benzoic acid by solubility method

PCO6: To determine the COD in the given water sample

COURSE : M.Sc IIIrd Semester (Theory)

Subject: Physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
CO1	1	3	2	-	3	3	3	-
CO2	1	2	3	3	3	3	3	-
CO3	1	2	2	3	3	3	3	-
CO4	-	2	2	3	3	3	3	-
CO5	3	2	2	1	3	3	3	-
CO6	3	1	2	3	3	3	3	-
CO7	1	2	2	3	3	3	3	-
CO8	-	1	2	3	3	3	3	
COUDSE M So III Someston (Prostical) Subject - physical C								

COURSE : M.Sc III Semester (Practical)

Subject : physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
PCO1	2	2	-	2	2	2	3	3
PCO2	2	2	-	3	-	-	-	3
PCO3	2	2	-	3	-	-	-	3
PCO4	2	2	-	3	-	-	-	3

IV SEM

Subject: Physical Chemistry-IV

CO1: To study the applicative part of the superconductors of various process

CO2: To understand the fundamentals of magnetochemistry.

CO3: Basic concept of Partial molar properties.

CO4: To study the law, principle, properties, derivation, equation and process of partial molar properties.

CO5: To study the detailed study of atomic spectra and atomic structure.

CO6:To study the space quantization of some effects.

CO7:To study the applicative part of electrochemistry and electroplating.

CO8: To know the summery of corrosion and plating.

PCO1: Determine the molecular radius of glycerol by viscosity method.

PCO2: To determine the molar refraction of methylacetate, ethylacetate, n-hexane and CCl4 and hence to calculate the refraction of C, H and Cl atom.

PCO3: Equivalent conductance of infinite dilution of weak electrolyte (CH3COOH) by kohlraurch's law.

PCO4: To verify beer's lambertz law for Cu-NH3 complex and hence to determine the unknown Cu ion concentration in a given solution.

COURSE : M.Sc IV Semester (Theory)

Subject: Physical Chemistry

Course Outcomes	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	3	3	3	3	3	-
CO2	-	1	3	3	3	3	3	-
CO3	2	3	1	3	3	3	3	-
CO4	1	2	2	3	3	3	3	-
CO5	1	2	2	1	3	3	3	-
CO6	2	1	2	2	3	3	3	-
CO7	1	2	3	3	3	3	3	-
CO8	-	1	2	3	3	3	3	

COURSE : M.Sc IV Semester (Practical)

Subject: Physical Chemistry

Course	PO1	PO2	PO3	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes								
PCO1	2	2	-	2	2	-	-	3
PCO2	2	2	-	3	-	-	-	3
PCO3	2	2	-	3	-	-	-	3
PCO4								

cipal, S.B.Arts & K.C.P. Science College BIJAPUR.

ordinator S.B.Arts & K.C.P.Science College, Vijayapur. IQAC,

ordinator,

P. G. Department of Chemistry, SB Arts & KCP Science Leilege BIJAPUR - 586101 Mapping of Course Outcomes with Programme Outcomes and Programme Specific Outcomes

EVALUATION MAPPING

THEORY:

2. University Examination = 80 marks

Sl No	Parameter	Percentage (%)
1	Knowledge	20
2	Understanding	25
3	Numericals	10
4	Descriptive	45

ncipal, S.B.Arts & K.C.P. Science College BIJAPUR.

IQAC, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur.

hator, P. G. Department of Chemistry, SB Arts & KCP Science Lullege BIJAFUR - 586101

Practical Examination

Marks Distribution :

1. Internal Assessment = 10 marks

2. University Examination = 40 marks

Class : M.Sc I Semester

Sl No	Parameter	Percentage		
1	Accuracy	63		
2	Technique / Systematic Percentage	13		
3	Record Book	12		
4	Viva - Voce	12		
Class : M	.Sc II Semester			
Sl No	Parameter	Percentage		
1.	Preliminary and Solubility	12.5		
2.	Melting Point/Boiling Point	7.5		
3.	Elements Detection	10		
4.	Functional Group	10		
5.	Identification and Structure	10		
6.	Preparation of Derivative	10		
7.	MP of Derivative	7.5		
8.	Technique and Presentation	7.5		
9.	Viva –Voce	12.5		
10.	Jouranl	12.5		
Class : M	.Sc III Semester			
Sl No	Parameter	Percentage		
1	Accuracy	45		
2	Calculation/Graph	22.5		
3	Technique / Systematic Percentage	7.5		
4	Record Book	12.5		
5	Viva - Voce	12.5		
Class : M	.Sc IV Semester			
Sl No	Parameter	Percentage		
1	Preliminar	20		
2	Positive radical	30		
3	Negative radicals	25		
4	Journal	12.5		
	Viva-voce	12.5		

ipal, S.B.Arts & K.C.P. Science College BIJAPUR.

IQAC, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur.

eordinator, P. G. Department of Chemistry, SB Arts & KCP Science Lullege BIJAFUR - 586101

B.L.D.E.Association's

S.B.Arts and K.C.P. Science College Vijayapur

PG DEPARTMENT OF CHEMISTRY

Programme Outcomes (POs),

Programme Specific Outcomes(PSOs)

and Course Outcomes (COs)

B.L.D.E. Association's S.B. Arts and K.C.P Science College Bijapur Post Graduate Department of Chemistry POS 2019-2020 Subject: Spectroscopy

P01: In advance elementary/fundamental knowledge.

PO2: Critical thinking, scientific methods to design, carry out analytical the results of experiments and get awareness of the impact of chemistry on environment, society, etc.

PO3: Higher education, competitive, Reputed Research laboratory.

PO4: Industrial application.

PSO1: To develop strong and compete knowledge in theoretical and practical chemistry.

PSO2: Able to explain Theory, Principle, Postulates, Methods, explaining instrumentation, Derivation, calculations and to calculate the physical and electrochemical parameters

PSO3: To recognize the various laws and theories and solving numerical problems.

PSO4: To develop various technical and analytical skills through laboratory training.

POS5: To create awareness the importance. And impact of chemistry on environment.

M.Sc 1st Sem: Spectroscopy-I

CO1: Review of different types of electromagnetic radiations.

CO2: Study the types of transitions and their energy levels.

CO3: Understand the selection rules.

CO4: Study the classification of polyatomic molecules (CO₂, CH₃F and BCl₃) based on moment of inertia-linear, symmetric top and asymmetric top.

C05: To know the detail study of UV-Visible Spectroscopy.

CO6: To study the λ max for polyenes, α , β -unsaturated aldehydes and ketones (Woodward-Fisher rules), aromatic systems and their derivatives.

CO7: To know about the number of degrees of freedom of vibration, modes of vibratioa and, Vibrational coupling overtones and Fermi resonance.

CO8: To study the brief discussion of identification of functional groups alkanes, alkenes, aromatics, carboxylic acids, carbonyl compounds(aldehydes and ketones, esters), amides and amines.

CO9: To study the principle, instrumentation and applications of Raman Spectra

COURSE : M.Sc Ist Semester (Theory)

Course Code : CHGT-1.4

Subject:	Spectroscopy-I
----------	----------------

Course	P01	P02	P03	P04	PS01	PSO2	PSO3	PSO4	PSO5
Outcomes									
C01	2	2	3	3	1	3	3	2	3
CO2	1	1	3	2	3	3	3	2	3
CO3	-	2	1	3	3	3	3	2	3
CO4	-	3	2	2	3	3	3	2	3
C05	3	2	1	3	3	3	3	2	3
C06	2	3	2	1	3	3	3	2	3
C07	2	1	1	3	3	3	3	2	3
C08	-	3	2	1	3	3	3	2	3
CO9	-	3	1	1	3	3	3	2	3

M.Sc 2nd Sem: Spectroscopy-II

CO1: To understand the magnetic properties of nuclei.

CO2: To learn about the various factors influencing in NMR spectroscopy.

CO3: To know about the principle, instrumentation and applications of FT-NMR spectroscopy.

CO4: To study the brief discussion of simplification of complex spectra.

C05: To know the detail study of the ¹³C-NMR spectroscopy.

CO6: To learn about the two dimensional NMR spectroscopy (COSY, NOESY, DEPT Spectra and MRI).

C07: To know the detail study of the mass spectroscopy.

CO8: To understand the basic theory, principle and instrumentation of different mass spectroscopy techniques.

CO9: To know about the modes of fragmentation and their rules for different class of organic compounds.

CO10: Combined applications of spectroscopic techniques.

COURSE : M.Sc IInd Semester (Theory)

Course Code : CHGT-2.4

Subject: Spectroscopy-II

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
C01	3	2	3	1	3	3	3	2	3
CO2	1	3	2	2	3	3	3	2	3
CO3	3	2	3	3	3	3	3	2	3
CO4	1	3	-	2	3	3	3	2	3
CO5	2	3	2	1	3	3	3	2	3
C06	1	3	2	2	3	3	3	2	3
C07	-	2	1	3	3	3	3	2	3
C08	2	3	2	3	3	3	3	2	3
CO9	2	3	2	2	3	3	3	2	3
CO10	1	3	1	3	3	3	3	2	3

M.Sc 3rd Sem: Spectroscopy-III

CO1: To study the basic applications of infra red spectroscopy to inorganic compounds.

CO2: To know the changes in infrared spectra of donor molecules upon coordination.

CO3: To learn about the change in spectra accompanying change in symmetry upon coordination.

CO4: To know the detail study of the FTIR.

CO5: To learn about basic principle and interaction between spin and magnetic field ESR spectroscopy.

CO6: To discuss the various factors affecting for ESR spectroscopy.

C07: To know the detail study of the nuclear quadrupole resonance spectroscopy.

CO8: To study the theory, principles and experimental methods of mossbauer spectroscopy.

COURSE : M.Sc IIIrd Semester (Theory)

Course Code : CHGT-3.4

Subject: Spectroscopy-III

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
CO1	1	3	2	1	3	3	3	2	3
CO2	2	3	3	3	3	3	3	2	3
CO3	1	2	2	2	3	3	3	2	3
CO4	-	2	2	3	3	3	3	2	3
CO5	3	3	3	1	3	3	3	2	3
CO6	3	1	2	2	3	3	3	2	3
C07	2	2	3	3	3	3	3	2	3
CO8	-	1	2	2	3	3	3	2	3

M.Sc IVth Sem: Spectroscopy-IV

CO1: To know the detail study of the flame emission spectroscopy.

CO2: To understand the basic principle, theory and flame spectra variation of emission intensity with flames, flame background, metallic spectra in flame.

CO3: To study the applications of flame emission spectroscopy.

CO4: To know the detail study of the chiroptical spectroscopy.

CO5: To learn about the plane polarized light, instrumentation and optical rotary dispersion (ORD) of chiroptical spectroscopy.

CO6: To determine the configuration of cyclic and steroidal ketones.

C07: To study the theoretical basics for fluorescence and phosphorescence in molecular luminescence spectroscopy.

CO8: General scope of applications of luminescence.

CO9: To know the detail study of the photoelectron spectroscopy.

CO10: To learn about the X-ray photoelectron, Auger electron spectroscopy and applications.

COURSE : M.Sc IVth Semester (Theory)

Course Code : CHGT-4.4

Subject: Spectroscopy-IV

Course	P01	P02	P03	P04	PSO1	PSO2	PSO3	PSO4	PSO5
Outcomes									
C01	1	-	3	3	3	3	3	2	3
CO2	-	1	2	3	3	3	3	2	3
CO3	2	3	1	3	3	3	3	2	3
CO4	1	3	2	3	3	3	3	2	3
CO5	2	2	2	1	3	3	3	2	3
CO6	2	1	1	2	3	3	3	2	3
C07	1	2	3	3	3	3	3	2	3
C08	2	1	2	3	3	3	3	2	3
CO9	2	3	1	3	3	3	3	2	3
CO10	1	3	2	3	3	3	3	2	3

rincipal, S.B.Arts & K.C.P. Science College BIJAPUR.

EVALUATION MAPPING

THEORY:

Marks Distribution :

1. Internal Assessment = 10 marks

2. University Examination = 40 marks

Sl No	Parameter	Percentage (%)
1	Knowledge	10
2	Understanding	15
3	Numericals	05
4	Descriptive	20

ator, P. G. Department of Chamistry, SB Arts & KCP Science Luillege

BIJAPUR - 586101

IQAC, Co-ordinator S.B.Arts & K.C.P.Science College, Vijayapur.

hcipal, S.B.Arts & K.C.P. Science College BIJAPUR.